914 resultados para 120402 Engineering Design Knowledge
Resumo:
The industry produces rolled, starting to and passing through casting forming processes, for example, in the case in question the rolling. A large portion of rolled products are flat, these have specific characteristics during their production and properties after finished that must be analyzed. For this a study of these properties must be made in materials samples, in order to be able to first know the material in question or provide new properties to the material through the process of rolling flat products. In this way is interesting that the students of mechanical engineering have knowledge of rolling trials, and from this can better understand the behavior of rolled. With this purpose the project of a benchtop rolling mill for the rolling of flat is needed, this work is the project of a sizing of one rolling mill non-ferrous materials
Resumo:
Eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein that contains the polyamine-modified lysine, hypusine [Nε-(4-amino-2-hydroxybutyl)lysine]. Hypusine occurs only in eukaryotes and certain archaea, but not in eubacteria. It is formed post-translationally by two consecutive enzymatic reactions catalyzed by deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). Hypusine modification is essential for the activity of eIF5A and for eukaryotic cell proliferation. eIF5A binds to the ribosome and stimulates translation in a hypusine-dependent manner, but its mode of action in translation is not well understood. Since quantities of highly pure hypusine-modified eIF5A is desired for structural studies as well as for determination of its binding sites on the ribosome, we have used a polycistronic vector, pST39, to express eIF5A alone, or to co-express human eIF5A-1 with DHS or with both DHS and DOHH in Escherichia coli cells, to engineer recombinant proteins, unmodified eIF5A, deoxyhypusine- or hypusine-modified eIF5A. We have accomplished production of three different forms of recombinant eIF5A in high quantity and purity. The recombinant hypusine-modified eIF5A was as active in methionyl-puromycin synthesis as the native, eIF5A (hypusine form) purified from mammalian tissue. The recombinant eIF5A proteins will be useful tools in future structure/function and the mechanism studies in translation.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Ubiquitous Computing promises seamless access to a wide range of applications and Internet based services from anywhere, at anytime, and using any device. In this scenario, new challenges for the practice of software development arise: Applications and services must keep a coherent behavior, a proper appearance, and must adapt to a plenty of contextual usage requirements and hardware aspects. Especially, due to its interactive nature, the interface content of Web applications must adapt to a large diversity of devices and contexts. In order to overcome such obstacles, this work introduces an innovative methodology for content adaptation of Web 2.0 interfaces. The basis of our work is to combine static adaption - the implementation of static Web interfaces; and dynamic adaptation - the alteration, during execution time, of static interfaces so as for adapting to different contexts of use. In hybrid fashion, our methodology benefits from the advantages of both adaptation strategies - static and dynamic. In this line, we designed and implemented UbiCon, a framework over which we tested our concepts through a case study and through a development experiment. Our results show that the hybrid methodology over UbiCon leads to broader and more accessible interfaces, and to faster and less costly software development. We believe that the UbiCon hybrid methodology can foster more efficient and accurate interface engineering in the industry and in the academy.
Resumo:
Many engineering sectors are challenged by multi-objective optimization problems. Even if the idea behind these problems is simple and well established, the implementation of any procedure to solve them is not a trivial task. The use of evolutionary algorithms to find candidate solutions is widespread. Usually they supply a discrete picture of the non-dominated solutions, a Pareto set. Although it is very interesting to know the non-dominated solutions, an additional criterion is needed to select one solution to be deployed. To better support the design process, this paper presents a new method of solving non-linear multi-objective optimization problems by adding a control function that will guide the optimization process over the Pareto set that does not need to be found explicitly. The proposed methodology differs from the classical methods that combine the objective functions in a single scale, and is based on a unique run of non-linear single-objective optimizers.
Resumo:
Flood disasters are a major cause of fatalities and economic losses, and several studies indicate that global flood risk is currently increasing. In order to reduce and mitigate the impact of river flood disasters, the current trend is to integrate existing structural defences with non structural measures. This calls for a wider application of advanced hydraulic models for flood hazard and risk mapping, engineering design, and flood forecasting systems. Within this framework, two different hydraulic models for large scale analysis of flood events have been developed. The two models, named CA2D and IFD-GGA, adopt an integrated approach based on the diffusive shallow water equations and a simplified finite volume scheme. The models are also designed for massive code parallelization, which has a key importance in reducing run times in large scale and high-detail applications. The two models were first applied to several numerical cases, to test the reliability and accuracy of different model versions. Then, the most effective versions were applied to different real flood events and flood scenarios. The IFD-GGA model showed serious problems that prevented further applications. On the contrary, the CA2D model proved to be fast and robust, and able to reproduce 1D and 2D flow processes in terms of water depth and velocity. In most applications the accuracy of model results was good and adequate to large scale analysis. Where complex flow processes occurred local errors were observed, due to the model approximations. However, they did not compromise the correct representation of overall flow processes. In conclusion, the CA model can be a valuable tool for the simulation of a wide range of flood event types, including lowland and flash flood events.
Resumo:
Worldwide, rural populations are far less likely to have access to clean drinking water than are urban ones. In many developing countries, the current approach to rural water supply uses a model of demand-driven, community-managed water systems. In Suriname, South America rural populations have limited access to improved water supplies; community-managed water supply systems have been installed in several rural communities by nongovernmental organizations as part of the solution. To date, there has been no review of the performance of these water supply systems. This report presents the results of an investigation of three rural water supply systems constructed in Saramaka villages in the interior of Suriname. The investigation used a combination of qualitative and quantitative methods, coupled with ethnographic information, to construct a comprehensive overview of these water systems. This overview includes the water use of the communities, the current status of the water supply systems, histories and sustainability of the water supply projects, technical reviews, and community perceptions. From this overview, factors important to the sustainability of these water systems were identified. Community water supply systems are engineered solutions that operate through social cooperation. The results from this investigation show that technical adequacy is the first and most critical factor for long-term sustainability of a water system. It also shows that technical adequacy is dependent on the appropriateness of the engineering design for the social, cultural, and natural setting in which it takes place. The complex relationships between technical adequacy, community support, and the involvement of women play important roles in the success of water supply projects. Addressing these factors during the project process and taking advantage of alternative water resources may increase the supply of improved drinking water to rural communities.
Resumo:
The engineering design of fissionchambers as on-line radiation detectors for IFMIF is being performed in the framework of the IFMIF-EVEDA works. In this paper the results of the experiments performed in the BR2 reactor during the phase-2 of the foreseen validation activities are addressed. Two detectors have been tested in a mixedneutron-gamma field with high neutron fluence and gamma absorbed dose rates, comparable with the expected values in the HFTM in IFMIF. Since the neutron spectra in all BR2 channels are dominated by the thermal neutron component, the detectors have been surrounded by a cylindrical gadolinium screen to cut the thermal neutron component, in order to get a more representative test for IFMIF conditions. The integrated gamma absorbed dose was about 4 × 1010 Gy and the fast neutron fluence (E > 0.1 MeV) 4 × 1020 n/cm2. The fissionchambers were calibrated in three BR2 channels with different neutron-to-gamma ratio, and the long-term evolution of the signals was studied and compared with theoretical calculations
Resumo:
The detailed study of the deterioration suffered by the materials of the components of a nuclear facility, in particular those forming part of the reactor core, is a topic of great interest which importance derives in large technological and economic implications. Since changes in the atomic-structural properties of relevant components pose a risk to the smooth operation with clear consequences for security and life of the plant, controlling these factors is essential in any development of engineering design and implementation. In recent times, tungsten has been proposed as a structural material based on its good resistance to radiation, but still needs to be done an extensive study on the influence of temperature on the behavior of this material under radiation damage. This work aims to contribute in this regard. Molecular Dynamics (MD) simulations were carried out to determine the influence of temperature fluctuations on radiation damage production and evolution in Tungsten. We have particularly focused our study in the dynamics of defect creation, recombination, and diffusion properties. PKA energies were sampled in a range from 5 to 50 KeV. Three different temperature scenarios were analyzed, from very low temperatures (0-200K), up to high temperature conditions (300-500 K). We studied the creation of defects, vacancies and interstitials, recombination rates, diffusion properties, cluster formation, their size and evolution. Simulations were performed using Lammps and the Zhou EAM potential for W
Resumo:
Semantic technologies have become widely adopted in recent years, and choosing the right technologies for the problems that users face is often a difficult task. This paper presents an application of the Analytic Network Process for the recommendation of semantic technologies, which is based on a quality model for semantic technologies. Instead of relying on expert-based comparisons of alternatives, the comparisons in our framework depend on real evaluation results. Furthermore, the recommendations in our framework derive from user quality requirements, which leads to better recommendations tailored to users’ needs. This paper also presents an algorithm for pairwise comparisons, which is based on user quality requirements and evaluation results.
Resumo:
Cold-drawn steel rods and wires retain significant residual stresses as a consequence of the manufacturing process. These residual stresses are known to be detrimental for the mechanical properties of the wires and their durability in aggressive environments. Steel makers are aware of the problem and have developed post-drawing processes to try and reduce the residual stresses on the wires. The present authors have studied this problem for a number of years and have performed a detailed characterization of the residual stress state inside cold-drawn rods, including both experimental and numerical techniques. High-energy synchrotron sources have been particularly useful for this research. The results have shown how residual stresses evolve as a consequence of cold-drawing and how they change with subsequent post-drawing treatments. The authors have been able to measure for the first time a complete residual strain profile along the diameter in both phases (ferrite and cementite) of a cold-drawn steel rod.
Resumo:
Ontology quality can be affected by the difficulties involved in on-tology modelling which may imply the appearance of anomalies in ontologies. This situation leads to the need of validating ontologies, that is, assessing their quality and correctness. Ontology validation is a key activity in different ontol-ogy engineering scenarios such as development and selection. This paper con-tributes to the ontology validation activity by proposing a web-based tool, called OOPS!, independent of any ontology development environment, for de-tecting anomalies in ontologies. This tool will help developers to improve on-tology quality by automatically detecting potential errors.
Resumo:
In this poster paper we present an overview of knOWLearn, a novel approach for building domain ontologies in a semi-automatic fashion.
Resumo:
Verifying whether an ontology meets the set of established requirements is a crucial activity in ontology engineering. In this sense, methods and tools are needed (a) to transform (semi-)automatically functional ontology requirements into SPARQL queries, which can serve as unit tests to verify the ontology, and (b) to check whether the ontology fulfils the requirements. Thus, our purpose in this poster paper is to apply the SWIP approach to verify whether an ontology satisfies the set of established requirements.
Resumo:
The Semantics Difficulty Model (SDM) is a model that measures the difficult of introducing semantics technology into a company. SDM manages three descriptions of stages, which we will refer to as ?snapshots?: a company semantic snapshot, data snapshot and semantic application snapshot. Understanding a priory the complexity of introducing semantics into a company is important because it allows the organization to take early decisions, thus saving time and money, mitigating risks and improving innovation, time to market and productivity. SDM works by measuring the distance between each initial snapshot and its reference models (the company semantic snapshots reference model, data snapshots reference model, and the semantic application snapshots reference model) with Euclidian distances. The difficulty level will be "not at all difficult" when the distance is small, and becomes "extremely difficult" when the the distance is large. SDM has been tested experimentally with 2000 simulated companies with arrangements and several initial stages. The output is measured by five linguistic values: "not at all difficult, slightly difficult, averagely difficult, very difficult and extremely difficult". As the preliminary results of our SDM simulation model indicate, transforming a search application into integrated data from different sources with semantics is a "slightly difficult", in contrast with data and opinion extraction applications for which it is "very difficult".