986 resultados para 111203 Cancer Genetics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Overexpression of Notch receptors and ligands has been associated with various cancers and developmental disorders, making Notch a potential therapeutic target. Here, we report characterization of Notch1 monoclonal antibodies (mAb) with therapeutic potential. The mAbs generated against epidermal growth factor (EGF) repeats 11 to 15 inhibited binding of Jagged1 and Delta-like4 and consequently, signaling in a dose-dependent manner, the antibodies against EGF repeats 11 to 12 being more effective than those against repeats 13 to 15. These data emphasize the role of EGF repeats 11 to 12 in ligand binding. One of the mAbs, 602.101, which specifically recognizes Notch1, inhibited ligand-dependent expression of downstream target genes of Notch such as HES-1, HES-5, and HEY-L in the breast cancer cell line MDA-MB-231. The mAb also decreased cell proliferation and induced apoptotic cell death. Furthermore, exposure to this antibody reduced CD44(Hi)/CD24(Low) subpopulation in MDA-MB-231 cells, suggesting a decrease in the cancer stem-like cell subpopulation. This was confirmed by showing that exposure to the antibody decreased the primary, secondary, and tertiary mammosphere formation efficiency of the cells. Interestingly, effect of the antibody on the putative stem-like cells appeared to be irreversible, because the mammosphere-forming efficiency could not be salvaged even after antibody removal during the secondary sphere formation. The antibody also modulated expression of genes associated with stemness and epithelial-mesenchymal transition. Thus, targeting individual Notch receptors by specific mAbs is a potential therapeutic strategy to reduce the potential breast cancer stem-like cell subpopulation. Mol Cancer Ther; 11(1); 77-86. (C) 2011 AACR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emerging evidence suggests that cancers arise in stem/progenitor cells. Yet, the requirements for transformation of these primitive cells remains poorly understood. In this study, we have exploited the `mammosphere' system that selects for primitive mammary stem/progenitor cells to explore their potential and requirements for transformation. Introduction of Simian Virus 40 Early Region and hTERT into mammosphere-derived cells led to the generation of NBLE, an immortalized mammary epithelial cell line. The NBLEs largely comprised of bi-potent progenitors with long-term self-renewal and multi-lineage differentiation potential. Clonal and karyotype analyses revealed the existence of heterogeneous population within NBLEs with varied proliferation, differentiation and sphere-forming potential. Significantly, injection of NBLEs into immunocompromised mice resulted in the generation of invasive ductal adenocarcinomas. Further, these cells harbored a sub-population of CD44(+)/CD24(-) fraction that alone had sphere- and tumor-initiating potential and resembled the breast cancer stem cell gene signature. Interestingly, prolonged in vitro culturing led to their further enrichment. The NBLE cells also showed increased expression of stemness and epithelial to mesenchymal transition markers, deregulated self-renewal pathways, activated DNA-damage response and cancer-associated chromosomal aberrations-all of which are likely to have contributed to their tumorigenic transformation. Thus, unlike previous in vitro transformation studies that used adherent, more differentiated human mammary epithelial cells our study demonstrates that the mammosphere-derived, less-differentiated cells undergo tumorigenic conversion with only two genetic elements, without requiring oncogenic Ras. Moreover, the striking phenotypic and molecular resemblance of the NBLE-generated tumors with naturally arising breast adenocarcinomas supports the notion of a primitive breast cell as the origin for this subtype of breast cancer. Finally, the NBLEs represent a heterogeneous population of cells with striking plasticity, capable of differentiation, self-renewal and tumorigenicity, thus offering a unique model system to study the molecular mechanisms involved with these processes. Oncogene (2012) 31, 1896-1909; doi:10.1038/onc.2011.378; published online 29 August 2011

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CDC73 gene is mutationally inactivated in hereditary and sporadic parathyroid tumors. It negatively regulates beta-catenin, cyclin D1, and c-MYC. Down-regulation of CDC73 has been reported in breast, renal, and gastric carcinomas. However, the reports regarding the role of CDC73 in oral squamous cell carcinoma (OSCC) are lacking. In this study we show that CDC73 is down-regulated in a majority of OSCC samples. We further show that oncogenic microRNA-155 (miR-155) negatively regulates CDC73 expression. Our experiments show that the dramatic up-regulation of miR-155 is an exclusive mechanism for down-regulation of CDC73 in a panel of human cell lines and a subset of OSCC patient samples in the absence of loss of heterozygosity, mutations, and promoter methylation. Ectopic expression of miR-155 in HEK293 cells dramatically reduced CDC73 levels, enhanced cell viability, and decreased apoptosis. Conversely, the delivery of a miR-155 antagonist (antagomir-155) to KB cells overexpressing miR-155 resulted in increased CDC73 levels, decreased cell viability, increased apoptosis, and marked regression of xenografts in nude mice. Cotransfection of miR-155 with CDC73 in HEK293 cells abrogated its pro-oncogenic effect. Reduced cell proliferation and increased apoptosis of KB cells were dependent on the presence or absence of the 3'-UTR in CDC73. In summary, knockdown of CDC73 expression due to overexpression of miR-155 not only adds a novelty to the list of mechanisms responsible for its down-regulation in different tumors, but the restoration of CDC73 levels by the use of antagomir-155 may also have an important role in therapeutic intervention of cancers, including OSCC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abrus precatorius is highly regarded as a universal panacea in the herbal medicine with diverse pharmacological activity spectra. This experimental study on the mechanism of the anticancer activity of A. precatorius leaf extracts, may offer new evidence for A. precatorius in the treatment of breast cancer in clinical practice. Cell death was determined by using MTT assay. Further analyses were carried out by doing DNA laddering, PARP cleavage, FACS, semi-quantitative RT-PCR and detection of cellular reactive oxygen species (ROS) by DCFDA assay. A. precatorius showed very striking inhibition on MDA-MB-231 cells. MTT assay showed more than 75 % inhibition of the cells and treated cells indicated visible laddering pattern with thick compact band. PARP cleavage produced 89 kDa cleavage product which was associated with apoptosis. Flow cytometer exhibited a sub-G0/G1 peak as an indicative of apoptosis. mRNA expression level of apoptosis-related genes p21 and p53 was markedly increased in cells treated with the extract as compared to control. The up-regulation of p21 and p53 may be the molecular mechanisms by which A. precatorius extract which induces apoptosis. An increase in the concentration of A. precatorius extract does not generate ROS, instead it reduces ROS formation in MDA-MB-231 cells, as evident from the shift in fluorescence below untreated control. This is the first report showing that A. precatorius leaf extract exhibits a growth inhibitory effect by induction of apoptosis in MDA-MB-231 cells. Our results contribute towards validation of the A. precatorius extract as a potentially effective chemopreventive or therapeutic agent against breast cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Insulin like growth factor binding proteins modulate the mitogenic and pro survival effects of IGF. Elevated expression of IGFBP2 is associated with progression of tumors that include prostate, ovarian, glioma among others. Though implicated in the progression of breast cancer, the molecular mechanisms involved in IGFBP2 actions are not well defined. This study investigates the molecular targets and biological pathways targeted by IGFBP2 in breast cancer. Methods: Transcriptome analysis of breast tumor cells (BT474) with stable knockdown of IGFBP2 and breast tumors having differential expression of IGFBP2 by immunohistochemistry was performed using microarray. Differential gene expression was established using R-Bioconductor package. For validation, gene expression was determined by qPCR. Inhibitors of IGF1R and integrin pathway were utilized to study the mechanism of regulation of beta-catenin. Immunohistochemical and immunocytochemical staining was performed on breast tumors and experimental cells, respectively for beta-catenin and IGFBP2 expression. Results: Knockdown of IGFBP2 resulted in differential expression of 2067 up regulated and 2002 down regulated genes in breast cancer cells. Down regulated genes principally belong to cell cycle, DNA replication, repair, p53 signaling, oxidative phosphorylation, Wnt signaling. Whole genome expression analysis of breast tumors with or without IGFBP2 expression indicated changes in genes belonging to Focal adhesion, Map kinase and Wnt signaling pathways. Interestingly, IGFBP2 knockdown clones showed reduced expression of beta-catenin compared to control cells which was restored upon IGFBP2 re-expression. The regulation of beta-catenin by IGFBP2 was found to be IGF1R and integrin pathway dependent. Furthermore, IGFBP2 and beta-catenin are co-ordinately overexpressed in breast tumors and correlate with lymph node metastasis. Conclusion: This study highlights regulation of beta-catenin by IGFBP2 in breast cancer cells and most importantly, combined expression of IGFBP2 and beta-catenin is associated with lymph node metastasis of breast tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Wilms tumor 1 gene (WT1) can either repress or induce the expression of genes. Inconsistent with its tumor suppressor role, elevated WT1 levels have been observed in leukemia and solid tumors. WT1 has also been suggested to act as an oncogene by inducing the expression of MYC and BCL-2. However, these are only the correlational studies, and no functional study has been performed to date. Consistent with its tumor suppressor role, CDC73 binds to RNA polymerase II as part of a PAF1 transcriptional regulatory complex and causes transcriptional repression of oncogenes MYC and CCND1. It also represses beta-catenin-mediated transcription. Based on the reduced level of CDC73 in oral squamous cell carcinoma (OSCC) samples in the absence of loss-of-heterozygosity, promoter methylation, and mutations, we speculated that an inhibitory transcription factor is regulating its expression. The bioinformatics analysis predicted WT1 as an inhibitory transcription factor to regulate the CDC73 level. Our results showed that overexpression of WT1 decreased CDC73 levels and promoted proliferation of OSCC cells. ChIP and EMSA results demonstrated binding of WT1 to the CDC73 promoter. The 5-azacytidine treatment of OSCC cells led to an up-regulation of WT1 with a concomitant down-regulation of CDC73, further suggesting regulation of CDC73 by WT1. Exogenous CDC73 attenuated the protumorigenic activity of WT1 by apoptosis induction. An inverse correlation between expression levels of CDC73 and WT1 was observed in OSCC samples. These observations indicated that WT1 functions as an oncogene by repressing the expression of CDC73 in OSCC. We suggest that targeting WT1 could be a therapeutic strategy for cancer, including OSCC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite intense research efforts that have provided enormous insight, cancer continues to be a poorly understood disease. There has been much debate over whether the cancerous state can be said to originate in a single cell or whether it is a reflection of aberrant behaviour on the part of a `society of cells'. This article presents, in the form of a debate conducted among the authors, three views of how the problem might be addressed. We do not claim that the views exhaust all possibilities. These views are (a) the tissue organization field theory (TUFT) that is based on a breakdown of tissue organization involving many cells from different embryological layers, (b) the cancer stem cell (CSC) hypothesis that focuses on genetic and epigenetic changes that take place within single cells, and (c) the proposition that rewiring of the cell's protein interaction networks mediated by intrinsically disordered proteins (IDPs) drives the tumorigenic process. The views are based on different philosophical approaches. In detail, they differ on some points and agree on others. It is left to the reader to decide whether one approach to understanding cancer appears more promising than the other.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic mutations in microcephalinl (MCPH1) cause primary autosomal recessive microcephaly which is characterized by a marked reduction in brain size. MCPH1 encodes a centrosomal protein with three BRCT (BRCA1 C-terminal) domains. Also, it is a key regulator of DNA repair pathway and cell cycle checkpoints. Interestingly, in the past few years, many research studies have explored the role of MCPH1, a neurodevelopmental gene in several cancers and its tumor suppressor functions have been elucidated. Given the diverse new emerging roles, it becomes critical to review and summarize the multiple roles of MCPH1 that is currently lacking in the literature. In this review after systematic analysis of literature, we summarise the multiple functional roles of MCPH1 in centrosomal, DNA repair and apoptotic pathways. Additionally, we discuss the considerable efforts taken to understand the implications of MCPH1 in diseases such as primary microcephaly and its other emerging association with cancer and otitis media. The promising view is that MCPH1 has distinct roles and its clinical associations in various diseases makes it an attractive therapeutic target. (C) 2014 Elsevier GmbH. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The alpha v beta 3 and alpha v beta 5 integrins, transmembrane glycoprotein receptors, are over-expressed in numerous tumors and in endothelial cells that constitute tumor blood vessels. As this protein selectively binds to the Arg-Gly-Asp (RGD) sequence containing peptides, it is an attractive way to target tumors. Herein we have developed novel formulations for integrin mediated selective gene delivery. These formulations are composed of a novel palmitoylated tetrameric RGD containing scaffold (named RAFT-RGD), cationic gemini cholesterol (GL5) and a natural helper lipid 1,2-dioleoyl-L-alpha-glycero-3-phosphatidylethanolamine (DOPE). We have optimized a co-liposomal formulation to introduce the multivalent RGD-containing macromolecule in GL5: DOPE (GL5D) mixture to produce GL5D-RGD. We have unambiguously shown the selectivity of these formulations towards cancer cells that over express alpha v beta 3 and alpha v beta 5 integrins. Two reporter plasmids, pEGFP-C3 and PGL-3, were employed for the transfection experiments and it was shown that GL5D-RGD Liposomes increased exclusively the transfection in alpha v beta 3 and alpha v beta 5 overexpressing HeLa cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The Bmi1 polycomb ring finger oncogene, a transcriptional repressor belonging to the Polycomb group of proteins plays an important role in the regulation of stem cell self-renewal and is elevated in several cancers. In the current study, we have explored the role of Bmi1 in regulating the stemness and drug resistance of breast cancer cells. Methods: Using real time PCR and immunohistochemistry primary breast tissues were analyzed. Retro-and lentiviruses were utilized to overexpress and knockdown Bmi1, RT-PCR and Western blot was performed to evaluate mRNA and protein expression. Stemness properties were analyzed by flow cytometry and sphere-formation and tumor formation was determined by mouse xenograft experiments. Dual luciferase assay was employed to assess promoter activity and MTT assay was used to analyze drug response. Results: We found Bmi1 overexpression in 64% of grade III invasive ductal breast adenocarcinomas compared to normal breast tissues. Bmi1 overexpression in immortalized and transformed breast epithelial cells increased their sphere-forming efficiency, induced epithelial to mesenchymal transition ( EMT) with an increase in the expression of stemness-related genes. Knockdown of Bmi1 in tumorigenic breast cells induced epithelial morphology, reduced expression of stemness-related genes, decreased the IC50 values of doxorubicin and abrogated tumor-formation. Bmi1-high tumors showed elevated Nanog expression whereas the tumors with lower Bmi1 showed reduced Nanog levels. Overexpression of Bmi1 increased Nanog levels whereas knockdown of Bmi1 reduced its expression. Dual luciferase promoter-reporter assay revealed Bmi1 positively regulated the Nanog and NF kappa B promoter activity. RT-PCR analysis showed that Bmi1 overexpression activated the NF kappa B pathway whereas Bmi1 knockdown reduced the expression of NF kappa B target genes, suggesting that Bmi1 might regulate Nanog expression through the NF kappa B pathway. Conclusions: Our study showed that Bmi1 is overexpressed in several high-grade, invasive ductal breast adenocarcinomas, thus supporting its role as a prognostic marker. While Bmi1 overexpression increased self-renewal and promoted EMT, its knockdown reversed EMT, reduced stemness, and rendered cells drug sensitive, thus highlighting a crucial role for Bmi1 in regulating the stemness and drug response of breast cancer cells. Bmi1 may control self-renewal through the regulation of Nanog expression via the NF kappa B pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estrogen-related receptor (ESRRA) functions as a transcription factor and regulates the expression of several genes, such as WNT11 and OPN. Up-regulation of ESRRA has been reported in several cancers. However, the mechanism underlying its up-regulation is unclear. Furthermore, the reports regarding the role and regulation of ESRRA in oral squamous cell carcinoma (OSCC) are completely lacking. Here, we show that tumor suppressor miR-125a directly binds to the 3UTR of ESRRA and represses its expression. Overexpression of miR-125a in OSCC cells drastically reduced the level of ESRRA, decreased cell proliferation, and increased apoptosis. Conversely, the delivery of an miR-125a inhibitor to these cells drastically increased the level of ESRRA, increased cell proliferation, and decreased apoptosis. miR-125a-mediated down-regulation of ESRRA impaired anchorage-independent colony formation and invasion of OSCC cells. Reduced cell proliferation and increased apoptosis of OSCC cells were dependent on the presence of the 3UTR in ESRRA. The delivery of an miR-125a mimic to OSCC cells resulted in marked regression of xenografts in nude mice, whereas the delivery of an miR-125a inhibitor to OSCC cells resulted in a significant increase of xenografts and abrogated the tumor suppressor function of miR-125a. We observed an inverse correlation between the expression levels of miR-125a and ESRRA in OSCC samples. In summary, up-regulation of ESRRA due to down-regulation of miR-125a is not only a novel mechanism for its up-regulation in OSCC, but decreasing the level of ESRRA by using a synthetic miR-125a mimic may have an important role in therapeutic intervention of OSCC and other cancers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent reports suggest the existence of a subpopulation of stem-like cancer cells, termed as cancer stem cells (CSCs), which bear functional and phenotypic resemblance with the adult, tissue-resident stem cells. Side population (SP) assay based on differential efflux of Hoechst 33342 has been effectively used for the isolation of CSCs. The drug resistance properties of SP cells are typically due to the increased expression of ABC transporters leading to drug efflux. Conventionally used chemotherapeutic drugs may often leads to an enrichment of SP, revealing their inability to target the drug-resistant SP and CSCs. Thus, identification of agents that can reduce the SP phenotype is currently in vogue in cancer therapeutics. Withania somnifera (WS) and Tinospora cordifolia (TC) have been used in Ayurveda for treating various diseases, including cancer. In the current study, we have investigated the effects of ethanolic (ET) extracts of WS and TC on the cancer SP phenotype. Interestingly, we found significant decrease in SP on treatment with TC-ET, but not with WS-ET. The SP-inhibitory TC-ET was further fractionated into petroleum ether (TC-PET), dichloromethane (TC-DCM), and n-butyl alcohol (TC-nBT) fractions using bioactivity-guided fractionation. Our data revealed that TC-PET and TC-DCM, but not TC-nBT, significantly inhibited SP in a dose-dependent manner. Furthermore, flow cytometry-based functional assays revealed that TC-PET and TC-DCM significantly inhibited ABC-B1 and ABC-G2 transporters and sensitized cancer cells toward chemotherapeutic drug-mediated cytotoxicity. Thus, the TC-PET and TC-DCM may harbor phytochemicals with the potential to reverse the drug-resistant phenotype, thus improving the efficacy of cancer chemotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rrp1B (ribosomal RNA processing1 homolog B) is a novel candidate metastasis modifier gene in breast cancer. Functional gene assays demonstrated that a physical and functional interaction existing between Rrp1b and metastasis modifier gene SIPA1 causes reduction in the tumor growth and metastatic potential. Ectopic expression of Rrp1B modulates various metastasis predictive extra cellular matrix (ECM) genes associated with tumor suppression. The aim of this study is to determine the functional significance of single nucleotide polymorphism (SNP) in human Rrp1B gene (1307 T > C; rs9306160) with breast cancer development and progression. The study consists of 493 breast cancer cases recruited from Nizam's Institute of Medical Sciences, Hyderabad, and 558 age-matched healthy female controls from rural and urban areas. Genomic DNA was isolated by non-enzymatic method. Genotyping was done by amplification refractory mutation system (ARMS-PCR) method. Genotypes were reconfirmed by sequencing and results were analyzed statistically. We have performed Insilco analysis to know the RNA secondary structure by using online tool m fold. The TT genotype and T allele frequencies of Rrp1B1307 T > C polymorphism were significantly elevated in breast cancer (chi (2); p = < 0.008) cases compared to controls under different genetic models. The presence of T allele had conferred 1.75-fold risk for breast cancer development (OR = 1.75; 95 % CI = 1.15-2.67). The frequency of TT genotype of Rrp1b 1307T > C polymorphism was significantly elevated in obese patients (chi (2); p = 0.008) and patients with advanced disease (chi (2); p = 0.01) and with increased tumor size (chi (2); p = 0.01). Moreover, elevated frequency of T allele was also associated with positive lymph node status (chi (2); p = 0.04) and Her2 negative receptor status (chi (2); p = 0.006). Presence of Rrp1b1307TT genotype and T allele confer strong risk for breast cancer development and progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypoxia-inducible factor 1 alpha (HIF-1 alpha) is an important transcription factor that regulates different cellular responses to hypoxia. HIF-1 alpha is rapidly degraded by von Hippel-Lindau (VHL) protein under normoxic conditions and stabilized under hypoxia. A common variant of HIF-1 alpha (1772C > T) (rs 11549465) polymorphism, corresponding to an amino acid change from proline to serine at 582 position within the oxygen-dependent degradation domain, results in increased stability of the protein and altered transactivation of its target genes. The present study was aimed to find the association between HIF-1 alpha (1772C > T) (rs 11549465) polymorphism and breast cancer development. For this purpose, 348 primary breast cancer patients and 320 healthy and age-matched controls were genotyped through PCR-RFLP method. The genotype frequencies were compared between patients and controls, and their influence on clinical characteristics of breast cancer patients was analyzed. Our study revealed a significant increase of TT genotype in breast cancer patients compared to controls (p = 0.038). Further, TT genotype and T allele were found to be associated with progesterone receptor (PR)-negative status (p < 0.09). None of the clinical variables revealed significant association with HIF-1 alpha (1772C > T) (rs 11549465) polymorphism.