809 resultados para 030501 Free Radical Chemistry
Resumo:
The anionic complexes [Cu(L(1-))(3)](1-), L(-) = dopasemiquinone or L-dopasemiqui none, were prepared and characterized. The complexes are stable in aqueous solution showing intense absorption bands at ca. 605 nm for Cu(II)-L-dopasemiquinone and at ca. 595 nm for Cu(II)-dopasemiquinone in the UV-vis spectra, that can be assigned to intraligand transitions. Noradrenaline and adrenaline, under the same reaction conditions, did not yield Cu-complexes, despite the bands in the UV region showing that noradrenaline and adrenaline were oxidized during the process. The complexes display a resonance Raman effect, and the most enhanced bands involve ring modes and particularly the vCC + vCO stretching mode at ca. 1384 cm(-1). The free radical nature of the ligands and the oxidation state of the Cu(II) were confirmed by the EPR spectra that display absorptions assigned to organic radicals with g= 2.0005 and g = 2.0923, and for Cu(II) with g = 2.008 and g = 2.0897 for L-dopasemiquinone and dopasemiquinone, respectively. The possibility that dopamine and L-dopa can form stable and aqueous-soluble copper complexes at neutral pH, whereas noradrenaline and adrenaline cannot, may be important in understanding how Cu(II)-dopamine crosses the cellular membrane as proposed in the literature to explain the role of copper in Wilson disease. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Superoxide(O2-) is a reactive free radical that rapidly undergoes disproportionation to hydrogen peroxide and oxygen. This property makes preparation of superoxide standard for instrument calibration difficult. McDowell et al. (1983) showed photolysis of ketone and alcohol as a convenient method to generate superoxide through triplet and radical intermediates reacting with molecular oxygen. This study expands on this past work and investigates detailed mechanism of the reaction.
Resumo:
Bacterial cellulose/polymethacrylate nanocomposites have received attention in numerous areas of study and in a variety of applications. The attractive properties of methacrylate polymers and bacterial cellulose, BC, allow the synthesis of new nanocomposites with distinct characteristics. In this study, BC/poly(glycidylmethacrylate) (BC/PGMA) and BC/poly(ethyleneglycol)methacrylate (BC/PPEGMA) nanocomposites were prepared through in situ free radical polymerization of GMA and PEGMA, respectively. Ammonium persulphate (APS) was used as an initiator and N,N’methylenebisacrilamide (MBA) was used as a crosslinker in BC/PGMA. Chemical composition, morphology, thermal stability, water absorption, mechanic and surface properties were determined through specific characterization techniques. The optimal polymerization was obtained at (1:2) for BC/PGMA, (1:2:0.2) ratio for BC/GMA/MBA and (1:20) for BC/PPEGMA, with 0.5% of initiator at 60 ºC during 6 h. A maximum of 67% and 87% of incorporation percentage was obtained, respectively, for the nanocomposites BC/PGMA/MBA and BC/PPEGMA. BC/PGMA nanocomposites exhibited an increase of roughness and compactation of the three-dimensional structure, an improvement in the thermal and mechanical properties, and a decrease in their swelling ability and crystallinity. On the other hand, BC/PPEGMA showed a decrease of stiffness of three-dimensional structure, improvement in thermal and mechanical properties, an increase in their swelling ability and a decrease the crystallinity. Both BC/polymethacrylate nanocomposites exhibited a basic surface character. The acid treatment showed to be a suitable strategy to modifiy BC/PGMA nanocomposites through epoxide ring-opening reaction mechanism. Nanocomposites became more compact, smooth and with more water retention ability. A decrease in the thermal and mechanical proprieties was observed. The new nanocomposites acquired properties useful to biomedical applications or/and removal of heavy metals due to the presence of functional groups.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We describe a new physicochemical descriptor of the antioxidant activity of phenols, the energy difference between the two highest occupied molecular orbitals, which we believe will improve quantitative structure-activity relationship studies about these compounds. (C) 2003 Wiley Periodicals, Inc.
Resumo:
A new quinonemethide triterpene named as salacin, has been isolated from the root bark of Salacia campestris in addition to the known pristimerin, maytenin, 20 alpha-hydroxymaytenin, and netzahualcoyene. Salacin was identified on the basis of NMR-spectral and mass spectrometric analysis. The free-radical scavenging activities of the quinonemethide triterpenes salacin (1), pristimerin (2), maytenin (3), 20a-hydroxymaytenin (4), and netzahualcoyene (5) towards DPPH have been evaluated and showed absorbance variation (AA) of 19, 20, 39, 28, 55, and 10%, respectively, having rutin (74% at 50 pm) and BHT (7% at 50 mu M) as standard compounds.
Resumo:
The quantitative structure-activity relationship of a set of 19 flavonoid compounds presenting antioxidant activity was studied by means of PLS (Partial Least Squares) regression. The optimization of the structures and calculation of electronic properties were done by using the semiempirical method AMI. A reliable model (r(2) = 0.806 and q(2) = 0.730) was obtained and from this model it was possible to consider some aspects of the structure of the flavonoid compounds studied that are related with their free radical scavenging ability. The quality of the PLS model obtained in this work indicates that it can be used in order to design new flavonoid compounds that present ability to scavenge free radicals.
Resumo:
Changes in activities of Cu-Zn superoxide dismutase (SOD- E.C.1.15.1.1.) and lactate dehydrogenase (LDH- E.C.1.1.1.27.) and levels of copper, total protein, triglycerides, phospholipids and total lipids were investigated in pancreas of rats after intratracheal administration of NiCl2 (8.4 mumol/kg). Nickel chloride induced increased SOD activity in pancreas and erythrocytes. This elevation was related to increased copper and decreased phospholipid content in pancreas of these animals. In conclusion, the ability of an animal to tolerate nickel chloride induced damage was governed by a delicate balance between the generation of cytotoxic agents and the various pancreas defense capabilities.
Resumo:
Reactive oxygen species (ROS) and free radical species have been implicated in initiating, accompanying or causing many diseases in living organisms; there is thus, a continual need for antioxidants molecules to inactivate ROS/free radicals. Many studies of plants crude extracts have demonstrated free-radical scavenging and antioxidant action. Maytenus species have long been used, in several countries, as traditional medicines against gastric ulcers, dyspepsia and others gastric problems and for their anti-inflammatory properties. In this study, Maytenus aquifolium (Celastraceae) root bark ethanol extract was assessed for its ability to scavenge free radicals and reactive oxygen species. The results were expressed as percentage inhibition of the active species. The extract was efficient against studied reactive species: DPPH radical (obtained inhibition = 35.5 ± 1.3 %), ABTS.+ (IC50 = 0.0036 ± 0.0003 mg/mL), HOCl (IC50 = 0.002 ± 0.0001 mg/mL), O2 .- (obtained inhibition = 36.0 ± 2.1 %), and NO. (obtained inhibition = 18.3 ± 0.4 %). Uniterms Oxidant species Free radicals Maytenus aquifolium Oxidative damage.
Resumo:
Two new flavone glucosides, nitensosides A and B (1, 2), together with four known compounds, sorbifolin (3), sorbifolin 6-O-β-glucopyranoside (4), pedalitin (5), and pedalitin 6-O-β-glucopyranoside (6) were isolated from Pterogyne nitens. Their structures were elucidated from 1D and 2D NMR analysis, as well as by high resolution mass spectrometry. All the isolated flavones were evaluated for their myeloperoxidase (MPO) inhibitory activity. The most active compound, pedalitin, exhibited IC 50 value of 3.75 nM on MPO. Additionally, the radical-scavenging capacity of flavones 1-6 was evaluated towards ABTS and DPPH radicals and compared to standard compounds quercetin and Trolox®. © 2008 Pharmaceutical Society of Japan.
Resumo:
Apocynin is the most employed inhibitor of NADPH oxidase (NOX), a multienzymatic complex capable of catalyzing the one-electron reduction of molecular oxygen to the superoxide anion. Despite controversies about its selectivity, apocynin has been used as one of the most promising drugs in experimental models of inflammatory and neurodegenerative diseases. Here, we aimed to study the chemical and biophysical properties of apocynin. The oxidation potential was determined by cyclic voltammetry (Epa = 0.76V), the hydrophobicity index was calculated (logP = 0.83) and the molar absorption coefficient was determined (ε275nm = 1.1 × 104 M-1 cm-1). Apocynin was a weak free radical scavenger (as measured using the DPPH, peroxyl radical and nitric oxide assays) when compared to protocatechuic acid, used here as a reference antioxidant. On the other hand, apocynin was more effective than protocatechuic acid as scavenger of the non-radical species hypochlorous acid. Apocynin reacted promptly with the non-radical reactive species H2O2 only in the presence of peroxidase. This finding is relevant, since it represents a new pathway for depleting H2O2 in cellular experimental models, besides the direct inhibition of NADPH oxidase. This could be relevant for its application as an inhibitor of NOX4, since this isoform produces H 2O2 and not superoxide anion. The binding parameters calculated by fluorescence quenching showed that apocynin binds to human serum albumin (HSA) with a binding affinity of 2.19 × 104 M -1. The association did not alter the secondary and tertiary structure of HSA, as verified by synchronous fluorescence and circular dichroism. The displacement of fluorescent probes suggested that apocynin binds to site I and site II of HSA. Considering the current biomedical applications of this phytochemical, the dissemination of these chemical and biophysical properties can be very helpful for scientists and physicians interested in the use of apocynin.
Resumo:
Several mushroom species have been pointed out as sources of antioxidant compounds, in addition to their important nutritional value. Agaricus blazei and Lentinus edodes are among the most studied species all over the world, but those studies focused on their fruiting bodies instead of other presentations, such as powdered preparations, used as supplements. In the present work the chemical composition (nutrients and bioactive compounds) and antioxidant activity (free radical scavenging activity, reducing power and lipid peroxidation inhibition) of dried powder formulations of the mentioned mushroom species (APF and LPF, respectively) were evaluated. Powder formulations of both species revealed the presence of essential nutrients, such as proteins, carbohydrates and unsaturated fatty acids. Furthermore, they present a low fat content (<2 g/100 g) and can be used in low-calorie diets, just like the mushrooms fruiting bodies. APF showed higher antioxidant activity and higher content of tocopherols and phenolic compounds (124 and 770 μg/100 g, respectively) than LPF (32 and 690 μg/100 g). Both formulations could be used as antioxidant sources to prevent diseases related to oxidative stress. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Biological activities of flavonoids have been extensively reviewed in literature. The biochemical profile of afzelin, kaempferitrin, and pterogynoside acting on reactive oxygen species was investigated in this paper. The flavonoids were able to act as scavengers of the superoxide anion, hypochlorous acid and taurine chloramine. Although flavonoids are naturally occurring substances in plants which antioxidant activities have been widely advertised as beneficial, afzelin, kaempferitrin, and pterogynoside were able to promote cytotoxic effect. In red blood cells this toxicity was enhanced, depending on flavonoids concentration, in the presence of hypochlorous acid, but reduced in the presence of 2,20 -azo-bis(2-amidinopropane) free radical. These flavonoids had also promoted the death of neutrophils, which was exacerbated when the oxidative burst was initiated by phorbol miristate acetate. Therefore, despite their well-known scavenging action toward free radicals and oxidants, these compounds could be very harmful to living organisms through their action over erythrocytes and neutrophils.