990 resultados para 029903 Medical Physics


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radiotherapy in veterinary practice is already known and widely distributed in large specialized centers of developed countries. In early 2000, there were about 30 radiotherapy equipment specifically designed for the veterinary clinic in the United States. In Brazil, the veterinary radiotherapy is still confined to research in universities, where most of the procedures is radiation therapy performed with superficial x-ray machines, with a voltage between 50 and 150 kVp, focus-distance surface (DFS) between 20,0cm and 40,0cm. As that occurs in human medicine, new research strengthens the development and prospects for the use of radiotherapy as a safe option for treating cancer in animals. This paper presents a methodology for calculating the exposure time for superficial radiotherapy procedures in veterinary medicine for small animals (dogs and cats). The dosimetric parameters of X-rays are determined using a spreadsheet tool for Microsoft Office Excel, developed in this paper for a device Dermopan 2, Veterinary Hospital of UNESP in Araçatuba. Using the worksheet helps the veterinarian to determine the time of exposure to radiation determined for each clinical case, optimize the workflow for professionals in veterinary radiotherapy procedures, which often lack the medical physics in team and at the time of radiotherapy. The correct use of spreadsheet decreases the chances of errors in dose rates of radiation, providing a higher quality of care

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radiotherapy is a branch of medical physics related to the treatment of malignant neoplasm, being an important instrument in the fight against cancer, when combined with the effort of a multidisciplinary team, composed of, physicians, physicists, nurses and technicians. Every year more than 3.5 million new cases of cancer are recorded in the world, being the prostate cancer responsible for approximately 25% of this amount (INCA and IARC, 2008). In this type of cancer, radiotherapy is a method indicated for treatement. The technological advance in this area over years has allowed a greater accuracy in the tumor location, more conformation of the radiation beam around the tumor, reducing the dose in healthy tissues and a consequent dose increase on treatment (Bedford et al., 1999). A radiotherapy planning, in which the physicist develops an important role, is composed of several steps, including choosing the best configuration of treatment beams. This choice has a close relationship with success of therapy and is critical to achieve the best distribution of dose inside the tumor and expose the least as possible the healthy tissue to radiation. In this work, two options for setting up camps in the first phase in a treatment of prostate cancer were simulated in computer planning: 4 fields orthogonal or “Box” with gantry angles in 00, 1800, 2700 e 90° and 4 fields angled or “X” (1350, 450, 3150 e 2250). The percentage of the rectal volume exposed to 40, 50, 60, 72 and 76 Gy should be limited to 60, 50, 25, 15 and 5% respectively (Greco et al., 2003). The femoral toxicity have limited dose by 70% of the total dose prescribed in a prostate treatment (Bedford et al., 1999). The planning of 27 patients with prostate adenocarcinoma submitted to 3D conformal radiotherapy were accompanied. As a result, it was assessed that the best TCP (tumor control probability)... (Complete abstract click electronic access below)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Boron Neutron Capture Therapy (BNCT), based on the 10B(n,α)7Li reaction, represents a promising modality for the treatment of cancers that are resistents to conventional treatments. So, it is necessary to find drugs (boron compounds) with high selectivity for each type of cancer, the neutrons source should be well characterized and the rate of 10B(n,α)7Li reaction should be measured with great accuracy as possible. This study aimed to develop a method for manufacturing thin films of boron, for measure the 10B(n,α)7Li reaction, and analyze the uniformity of the films. Five thin films of boron were manufactured with three different concentrations of boric acid, heated to transform the acid in boron, irradiated with thermic neutrons coupled to CR-39 detectors, in BNCT line at the reactor IEA-R1 IPEN/CNEN, São Paulo. After the irradiation, the detectors were chemically attacked with NaOH to reveal the tracks. The methodology presented is effective because it resulted in deposition of boron as thin film enabling the quantitative analysis of 10B(n,α)7Li reaction. The analysis of the uniformity of density of the induced tracks in CR-39 shows that, in most of the films, there is no uniformity in surface distribution of boron, but when the film is divided, we obtain some uniform sectors

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The goal of this work is to study the process of interaction of protons with matter through Monte Carlo simulation. For this purpose, it was employed the SRIM program (Stopping and Range of Ions in Matter ) and MCNPX (Monte Carlo N-Particle eXtended) v2.50. This work is going to support the development of a tomography system with protons. It was studied the interaction of proton with the follow materials: Polimethyl Mehacralate (PMMA), MS20 Tissue Substitute and water. This work employed energies in range of 50 MeV and 250 MeV, that is the range of clinical interest. The energy loss of proton after cross a material layer, the decreasing of its intensity, the angular and lateral de ection of incident beam, including and excluding nuclear interactions. This work is related with Medical Physics and Material Physics, like interaction of radiation with matter, particle transport phenomena, and the experimental methods in Nuclear Physics like simulation and computational by Monte Carlo method

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Medical Physics has been reaching an important role among several lines in Science, providing means for the improvement of several theories and procedures. Currently, its main application is related with the use of ionizing radiations, specially, in treatment procedures such as Radiotherapy. Radiosurgery is a Radiotherapy technique which consists in administering a single tumoricidal dose of radiation exclusively to the tumorous lesion. It becomes then an interesting alternative to surgical treatment, mainly in cerebral metastases, which are the most frequent cerebral tumors in the central nervous system. The radio neurosurgical team works out a planning for the Radiosurgery treatment, aiming for obtaining an appropriate ideal treatment for each case. For the working out of this treatment planning, Computed Tomography images of the region to be treated are obtained, digitalized and later, fused with nuclear magnetic resonance images. Through these images, critical structures, organs at risk and lesions are localized. After this, calculations are made to determine three-dimensional positions of isocenters, isodose curves, prescribed dose, collimators sizes, position, numbers and respective weight of isocentric conformal fields, and others. The treatment planning is commonly based in desired levels of dose for specific types of tumors and organs at risk concerning the irradiated region. Theses levels of dose are chosen in a way that a high probability of cure may be achieved and meanwhile, that the probability of complications, in whichever organ at risk, may be minimal. Thus, many researches have been carried out, showing that mathematical techniques may help to obtain an optimal planning for the treatment of cerebral metastases. Among the methods of optimization in the study...(Complete abstract click electronic access below)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper presents the radiometric parameters determined by the medical physicist during routine radiotherapy planning service in cases of breast cancer . The contours of the breast volume in patients undergoing radiation breast tumors at the Hospital das Clinicas, Faculty of Medicine , UNESP, Botucatu ( HCFMB ) during the year 2012 were analyzed . In order to analyze the influence of physical and radiometric parameters for the determination of the dose distribution of irradiated breast volume , four measurements of isodose curves were prepared in four different heights breast , and compared with the isodose curves plotted computationally . In the routine of planning , the medical physicist must determine the isodose curve that gives the best dose distribution homogeneity in the irradiated volume . The choice of the treatment plan can be done by dedicated computer systems , which require significantly costly investments available services having better financial support . In the Service of Medical Physics , Department of Radiotherapy , HC FMB , we use a two-dimensional software for determination of isodose curves , however , this software is out of date and frequently becomes inoperable due to the lack of maintenance and it is a closed system without feasibility of interference from computer professionals . This fact requires manual preparation of isodose curves , which are subject to uncertainties due to the subjectivity in the clinical interpretation of medical radiation oncologist and medical physicist responsible for planning , plus dispendiar significant calculation time . The choice of the optimal isodose curve depends on the energy of the radiation beam , the geometry and dimensions of the irradiated area . The contours of the breast studied in this work evaluations showed that , for a given energy input , such as the energy of 1.25 MeV of gamma radiation Unit Telecobaltoterapia , the determination of the percentage depth dose ( PDP ) ...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Along with the advance of technology, in terms of the expansion of medical exams that uses the ionizing radiation for diagnosis, there is also the concern about quality control for maintaining quality in radiographic imaging and for delivering low dose to the patient. Based on the Federal Order 453 of the Secretariat of Health Surveillance, which takes account of the practical and justification of individual medical exposures, the optimization of radiological protection, limitation of individual dose, and the prevention of accidents, were done through this paper radiodiagnostic tests on medical equipment in order to accept it or not, according to SVS-453. Along with the help and support of P&R Consulting and Medical Physics Marilia, SP, were made Quality Control and Radiometric Control in equipment from various cities across the state of São Paulo. The equipment discussed in this work is classified as conventional X-ray. According to the Federal Order SVS-453, the quality control in the program of quality assurance should include the following minimum set of constancy tests, with following minimum frequency: biennial tests for representative values of dose given to the patients of radiography and CT performed in the service; annual tests for accuracy of the indicator tube voltage (kVp), accuracy of exposure time, half-value layer, aligning the central axis of the beam of x-ray tube, performance (mGy / mA.min.m²), linearity of the rate of kerma on air with the mAs, reproducibility of the kerma on air rates, reproducibility of the automatic exposure, focal spot size, integrity of accessories and clothing for individual protection; semiannually for collimation system accuracy; weekly for temperature processing system and sensitometry processing system. For the room Radiometric Survey it was done a sketch...(Complete abstract click electronic access below)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radiotherapy in veterinary practice is already known and widely distributed in large specialized centers of developed countries. In early 2000, there were about 30 radiotherapy equipment specifically designed for the veterinary clinic in the United States. In Brazil, the veterinary radiotherapy is still confined to research in universities, where most of the procedures is radiation therapy performed with superficial x-ray machines, with a voltage between 50 and 150 kVp, focus-distance surface (DFS) between 20,0cm and 40,0cm. As that occurs in human medicine, new research strengthens the development and prospects for the use of radiotherapy as a safe option for treating cancer in animals. This paper presents a methodology for calculating the exposure time for superficial radiotherapy procedures in veterinary medicine for small animals (dogs and cats). The dosimetric parameters of X-rays are determined using a spreadsheet tool for Microsoft Office Excel, developed in this paper for a device Dermopan 2, Veterinary Hospital of UNESP in Araçatuba. Using the worksheet helps the veterinarian to determine the time of exposure to radiation determined for each clinical case, optimize the workflow for professionals in veterinary radiotherapy procedures, which often lack the medical physics in team and at the time of radiotherapy. The correct use of spreadsheet decreases the chances of errors in dose rates of radiation, providing a higher quality of care

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radiopharmaceuticals are substances marked with radionuclides that can be used for detection and treatment of cancer, infections and inflammatory diseases. They emit several types of radiation through different decay routes, each radioisotope with its specific properties and uses. They can usually be produced from several different materials, by bombardment with particle beams in a nuclear research reactor or cyclotron, depending on their characteristics. Brazil has four public institutions which produce - or import - and distribute radiopharmaceuticals to hospitals and clinics throughout its territory. The largest such institution, Ipen, distributes 97% of radiopharmaceuticals used in the country. Some radiopharmaceuticals decay very quickly, meaning they must be produced and quickly administered to the patient in the same location, presenting a logistical challenge. Nuclear medicine in Brazil is a promising field and has been steadily growing, although rigid laws and a lack of qualified work force hinder Research and Development efforts for new radiopharmaceuticals. The construction of a new nuclear research reactor, in 2016, should generate self-sufficiency and economy in radiopharmaceutical production and avoid a future crisis in the supply of technetium-99m, the most important radioisotope, used in over 80% of procedures with radiopharmaceuticals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents a brief historical about the use of ionizing radiations in Veterinary Medicine, instructing the physical beginnings and techniques wrapped in the realization of the proceedings of radiotherapy in animals, illustrating some treated cases, highlighting the difficulties and pointing to the perspectives and importance of the acting of the medical physics in this kind of therapeutic still little used in the national scenery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: This paper presents the application of MAGIC-f gel in a three-dimensional dose distribution measurement and its ability to accurately measure the dose distribution from a tomotherapy unit. Methods: A prostate intensity-modulated radiation therapy (IMRT) irradiation was simulated in the gel phantom and the treatment was delivered by a TomoTherapy equipment. Dose distribution was evaluated by the R2 distribution measured in magnetic resonance imaging. Results: A high similarity was found by overlapping of isodoses of the dose distribution measured with the gel and expected by the treatment planning system (TPS). Another analysis was done by comparing the relative absorbed dose profiles in the measured and in the expected dose distributions extracted along indicated lines of the volume and the results were also in agreement. The gamma index analysis was also applied to the data and a high pass rate was achieved (88.4% for analysis using 3%/3 mm and of 96.5% using 4%/4 mm). The real three-dimensional analysis compared the dose-volume histograms measured for the planning volumes and expected by the treatment planning, being the results also in good agreement by the overlapping of the curves. Conclusions: These results show that MAGIC-f gel is a promise for tridimensional dose distribution measurements. (C) 2012 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4704496]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A major challenge in imaging is the detection of small amounts of molecules of interest. In the case of magnetic resonance imaging (MRI) their signals are typically concealed by the large background signal of e.g. the tissue of the body. This problem can be tackled by hyperpolarization which increases the NMR signals up to several orders of magnitude. However, this strategy is limited for 1H, the most widely used nucleus in NMR andrnMRI, because the enormous number of protons in the body screen the small amount of hyperpolarized ones.Here, I describe a method giving rise to high 1H MRI contrast for hyperpolarized molecules against a large background signal. The contrast is based on the J-coupling induced rephasing of the NMR signal of molecules hyperpolarized via parahydrogen induce polarization (PHIP) and it can easily be implemented in common pulse sequences.rnrnHyperpolarization methods typically require expensive technical equipment (e.g. lasers or microwaves) and most techniques work only in batch mode, thus the limited lifetime of the hyperpolarization is limiting its applications. Therefore, the second part of my thesis deals with the simple and efficient generation of an hyperpolarization.These two achievements open up alternative opportunities to use the standard MRI nucleus 1H for e.g. metabolic imaging in the future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Il presente lavoro di tesi presenta la progettazione, realizzazione e applicazione di un setup sperimentale miniaturizzato per la ricostruzione di immagine, con tecnica di Tomografia ad Impedenza Elettrica (EIT). Il lavoro descritto nel presente elaborato costituisce uno studio di fattibilità preliminare per ricostruire la posizione di piccole porzioni di tessuto (ordine di qualche millimetro) o aggregati cellulari dentro uno scaffold in colture tissutali o cellulari 3D. Il setup disegnato incorpora 8 elettrodi verticali disposti alla periferia di una camera di misura circolare del diametro di 10 mm. Il metodo di analisi EIT è stato svolto utilizzando i) elettrodi conduttivi per tutta l’altezza della camera (usati nel modello EIT bidimensionale e quasi-bidimensionale) e ii) elettrodi per deep brain stimulation (conduttivi esclusivamente su un ridotto volume in punta e posti a tre diverse altezze: alto, centro e basso) usati nel modello EIT tridimensionale. Il metodo ad elementi finiti (FEM) è stato utilizzato per la soluzione sia del problema diretto che del problema inverso, con la ricostruzione della mappa di distribuzione della conduttività entro la camera di misura. Gli esperimenti svolti hanno permesso di ricostruire la mappa di distribuzione di conduttività relativa a campioni dell’ordine del millimetro di diametro. Tali dimensioni sono compatibili con quelle dei campioni oggetto di studio in ingegneria tissutale e, anche, con quelle tipiche dei sistemi organ-on-a-chip. Il metodo EIT sviluppato, il prototipo del setup realizzato e la trattazione statistica dei dati sono attualmente in fase di implementazione in collaborazione con il gruppo del Professor David Holder, Dept. Medical Physics and Bioengineering, University College London (UCL), United Kingdom.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In high energy teletherapy, VMC++ is known to be a very accurate and efficient Monte Carlo (MC) code. In principle, the MC method is also a powerful dose calculation tool in other areas in radiation oncology, e.g., brachytherapy or orthovoltage radiotherapy. However, VMC++ is not validated for the low-energy range of such applications. This work aims in the validation of the VMC++ MC code for photon beams in the energy range between 20 and 1000 keV.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this work was a Monte Carlo (MC) based investigation of the impact of different radiation transport methods in collimators of a linear accelerator on photon beam characteristics, dose distributions, and efficiency. Thereby it is investigated if it is possible to use different simplifications in the radiation transport for some clinical situations in order to save calculation time.