993 resultados para 0205 Optical Physics


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multipole expansion of an incident radiation field-that is, representation of the fields as sums of vector spherical wavefunctions-is essential for theoretical light scattering methods such as the T-matrix method and generalised Lorenz-Mie theory (GLMT). In general, it is theoretically straightforward to find a vector spherical wavefunction representation of an arbitrary radiation field. For example, a simple formula results in the useful case of an incident plane wave. Laser beams present some difficulties. These problems are not a result of any deficiency in the basic process of spherical wavefunction expansion, but are due to the fact that laser beams, in their standard representations, are not radiation fields, but only approximations of radiation fields. This results from the standard laser beam representations being solutions to the paraxial scalar wave equation. We present an efficient method for determining the multipole representation of an arbitrary focussed beam. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of near-resonant holographic interferometry techniques for use on flows seeded with atomic species is described. A theoretical model for the refractivity that is due to the seed species is outlined, and an approximation to this model is also described that is shown to be valid for practical regimes of interest and allows the number density of the species to be determined without knowledge of line-broadening effects. The details of quantitative number density experiments performed on an air-acetylene flame are given, and a comparison with an alternative absorption-based experiment is made. (C) 2004 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Near-resonant holographic interferometry is demonstrated to measure temperature and species concentration in a two-dimensional steady premixed air-acetylene flame. A peak temperature of (2600 +/- 100) K and a peak OH number density of (9.6 +/- 0.3) X 10(22) m(-3) are obtained, consistent with the expected values for such a flame. These values are determined by recording interferograms with a laser assumed sufficiently detuned from line center so that pressure and temperature broadening can be ignored. The results are thus obtained without making prior assumptions on the temperature or pressure of the flame beyond the existence of thermal equilibrium. (C) 2004 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Focussing particularly on solid-state laser systems, the phase-noise penalties of laser injection-locking and electro-optical phase-locking are derived using linearised quantum mechanical models. The fundamental performance limit (minimum achievable output phase noise) for an injection-locked laser (IJL) system at low frequencies is equal to that of a standard phase-insensitive amplifier, whereas, in principle, that of a phase-locked laser (PLL) system can be better. At high frequencies, the output phase noise of the IJL system is limited by that of the master laser, while that of the PLL system tends to a weighted sum of contributions from the master and slave laser fields. Under conditions of large amplification, particularly where there has been significant attenuation, the noise penalties are shown to be substantial. Nonideal photodetector characteristics are shown to add significantly to the noise penalties for the PLL system. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new design of an optical resonator for generation of single-photon pulses is proposed. The resonator is made of a cylindrical or spherical piece of a polymer squeezed between two flat dielectric mirrors. The mode characteristics of this resonator are calculated numerically. The numerical analysis is backed by a physical explanation. The decay time and the mode volume of the fundamental mode are sufficient for achieving more than 96% probability of generating a single-photon in a single-mode. The corresponding requirement for the reflectivity of the mirrors (similar to 99.9%) and the losses in the polymer ( 100 dB/m) are quite modest. The resonator is suitable for single-photon generation based on optical pumping of a single quantum system such as an organic molecule, a diamond nanocrystal, or a semiconductor quantum dot if they are imbedded in the polymer. (C) 2005 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present theory and simulations for a spectral narrowing scheme for laser diode arrays (LDAs) that employs optical feedback from a diffraction grating. We calculate the effect of the so-called smile of the LDA and show that it is possible to reduce the effect by using a cylindrical lens set at an angle to the beam. The scheme is implemented on a 19-element LDA with smile of 7.6 mu m and yields frequency narrowing from a free-running width of 2 to 0.15 nm. The experimental results are in good agreement with the theory. (c) 2005 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently, there have been several suggestions that weak Kerr nonlinearity can be used for generation of macroscopic superpositions and entanglement and for linear optics quantum computation. However, it is not immediately clear that this approach can overcome decoherence effects. Our numerical study shows that nonlinearity of weak strength could be useful for macroscopic entanglement generation and quantum gate operations in the presence of decoherence. We suggest specific values for real experiments based on our analysis. Our discussion shows that the generation of macroscopic entanglement using this approach is within the reach of current technology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Circuit QED is a promising solid-state quantum computing architecture. It also has excellent potential as a platform for quantum control-especially quantum feedback control-experiments. However, the current scheme for measurement in circuit QED is low efficiency and has low signal-to-noise ratio for single-shot measurements. The low quality of this measurement makes the implementation of feedback difficult, and here we propose two schemes for measurement in circuit QED architectures that can significantly improve signal-to-noise ratio and potentially achieve quantum-limited measurement. Such measurements would enable the implementation of quantum feedback protocols and we illustrate this with a simple entanglement-stabilization scheme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a technique to measure the viscosity of microscopic volumes of liquid using rotating optical tweezers. The technique can be used when only microlitre (or less) sample volumes are available, for example biological or medical samples, or to make local measurements in complicated micro-structures such as cells. The rotation of the optical tweezers is achieved using the polarisation of the trapping light to rotate a trapped birefringent spherical crystal, called vaterite. Transfer of angular momentum from a circularly polarised beam to the particle causes the rotation. The transmitted light can then be analysed to determine the applied torque to the particle and its rotation rate. The applied torque is determined from the change in the circular polarisation of the beam caused by the vaterite and the rotation rate is used to find the viscous drag on the rotating spherical particle. The viscosity of the surrounding liquid can then be determined. Using this technique we measured the viscosity of liquids at room temperature, which agree well with tabulated values. We also study the local heating effects due to absorption of the trapping laser beam. We report heating of 50-70 K/W in the region of liquid surrounding the particle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe the production of BECs on a new type of atom chip based on silver foil. Our atom chip is fabricated with thick wires capable of carrying currents of several amperes without overheating. The silver surface is highly reflective to light resonant with optical transitions used for Rb. The pattern on the chip consists of two parallel Z-trap wires, capable of producing two-wire guide, and two additional endcap wires for varying the axial confinement. Condensates are produced in magnetic microtraps formed within 1 mm of surface of the chip. We have observed the fragmentation of cold atom clouds when brought close to the chip surface. This results from a perturbed trapping potential caused by nanometer deviations of the current path through the wires on the chip. We present results of fragmentation of cold clouds at distances below 100 µm from the wires and investigate the origin of the deviating current. The fragmentation has different characteristics to those seen with copper conductors. The dynamics of atoms in these microtraps is also investigated. ©2005 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The following topics were dealt with: semiconductor growth (MBE, PECVD, MOCVD, MOVPE) and characterizations; high-electron mobility transistors (HEMTs); microcavity organic light emitting diode (MOLED); semiconductor superlattices; photodiode arrays; MEMS structures; lithography;semiconductor lasers; semiconductor optical amplifiers; surface treatment and annealing

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The random-phase approximation with exchange (RPAE) is used with a B-spline basis to compute dynamic dipole polarizabilities of noble-gas atoms and several other closed-shell atoms (Be, Mg, Ca, Zn, Sr, Cd, and Ba). From these, values of the van der Waals C6 constants for positronium interactions with these atoms are determined and compared with existing data. After correcting the RPAE polarizabilities to fit the most accurate static polarizability data, our best predictions of C6 for Ps–noble-gas pairs are expected to be accurate to within 1%, and to within a few percent for the alkaline-earth metals. We also used accurate dynamic dipole polarizabilities from the literature to compute the C6 coefficients for the alkali-metal atoms. Implications of increased C6 values for Ps scattering from more polarizable atoms are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A model for positron binding to polar molecules is considered by combining the dipole potential outside the molecule with a strongly repulsive core of a given radius. Using existing experimental data on binding energies leads to unphysically small core radii for all of the molecules studied. This suggests that electron–positron correlations neglected in the simple model play a large role in determining the binding energy. We account for these by including the polarization potential via perturbation theory and non-perturbatively. The perturbative model makes reliable predictions of binding energies for a range of polar organic molecules and hydrogen cyanide. The model also agrees with the linear dependence of the binding energies on the polarizability inferred from the experimental data (Danielson et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235203). The effective core radii, however, remain unphysically small for most molecules. Treating molecular polarization non-perturbatively leads to physically meaningful core radii for all of the molecules studied and enables even more accurate predictions of binding energies to be made for nearly all of the molecules considered.