953 resultados para ângulo articular
Resumo:
T2 mapping techniques use the relaxation constant as an indirect marker of cartilage structure, and the relaxation constant has also been shown to be a sensitive parameter for cartilage evaluation. As a possible additional robust biomarker, T2* relaxation time is a potential, clinically feasible parameter for the biochemical evaluation of articular cartilage.
Resumo:
http://www.woodheadpublishing.com/en/book.aspx?bookID=1480
Resumo:
To define the feasibility of utilizing T2* mapping for assessment of early cartilage degeneration prior to surgery in patients with symptomatic femoroacetabular impingement (FAI), we compared cartilage of the hip joint in patients with FAI and healthy volunteers using T2* mapping at 3.0 Tesla over time.
Resumo:
For nonsurgical treatment of fractures of the proximal phalanges of the triphalangeal fingers, different dynamic casts have been described. The main principle behind these casts is advancement and tightening of the extensor hood, caused by a combination of blocking the metacarpophalangeal joints in flexion and actively flexing the proximal interphalangeal joints. In contrast to established treatment protocols using functional forearm casts, the Lucerne cast allows for free mobilization of the wrist joint. The purpose of the current multicenter study was to compare the results of conservative, functional treatment using 2 different methods, either a forearm cast or a Lucerne cast.
Resumo:
OBJECTIVE: To evaluate the peri-operative analgesic efficacy of intra-articular bupivacaine administered before or after stifle arthrotomy. STUDY DESIGN: Prospective, randomized, blind, placebo-controlled experimental trial. ANIMALS: Thirty-nine healthy goats. METHODS: The goats were allocated randomly to one of three intra-articular treatment groups: group PRE (bupivacaine before and saline after surgery), group POST (saline before and bupivacaine after surgery) and group CON (saline before and after surgery). Anaesthesia was maintained with a constant end-tidal sevoflurane of 2.5%. Intra-operatively heart rate (HR), respiratory rate and mean arterial blood pressure (MAP) after critical surgical events (CSE) were recorded and compared with pre-incision values. Propofol requirements to maintain surgical anaesthesia were recorded. Flunixin was administered for 5 days. Post-operative pain assessment at 20 minutes, 2 hours, 4 hours after recovery and on day 2 and 3 included a multidimensional pain score (MPS), a lameness score and mechanical nociceptive threshold (MNT) testing. Rescue analgesia consisted of systemic opioids. Data were analysed using Kruskal-Wallis, Mann-Whitney, Friedman or chi-square tests as appropriate. RESULTS: Intra-operatively, group PRE had lower HR and MAP at several CSEs than groups POST/CON and required less propofol [0 mg kg(-1) (0-0 mg kg(-1))] than group POST/CON [0.3 mg kg(-1) (0-0.6 mg kg(-1))]. Post-operatively, group POST had significantly higher peri-articular MNTs than groups PRE and CON up to 4 hours after recovery. No treatment effect was detected for MPS, lameness scores and rescue analgesic consumption at any time point. CONCLUSIONS AND CLINICAL RELEVANCE: Pre-operative intra-articular bupivacaine provided notable intra-operative analgesia in goats undergoing stifle arthrotomy but did not reduce post-operative pain. Post-operative intra-articular bupivacaine provided a short lasting reduction of peri-articular hyperalgesia without affecting the requirements for systemic analgesia. Multimodal perioperative pain therapy is recommended to provide adequate analgesia for stifle arthrotomy in goats.
Resumo:
Bone wax is used to control femoral neck bleeding during open femoroacetabular impingement (FAI) surgery. Despite its widespread use, only a few case reports and small case series describe side effects after extraarticular use. It is unclear whether intraarticular use of bone wax leads to such complications. However, during revision FAI surgery, we have observed various degrees of articular inflammatory reactions.
Resumo:
OBJECTIVE: During postnatal development, mammalian articular cartilage acts as a surface growth plate for the underlying epiphyseal bone. Concomitantly, it undergoes a fundamental process of structural reorganization from an immature isotropic to a mature (adult) anisotropic architecture. However, the mechanism underlying this structural transformation is unknown. It could involve either an internal remodelling process, or complete resorption followed by tissue neoformation. The aim of this study was to establish which of these two alternative tissue reorganization mechanisms is physiologically operative. We also wished to pinpoint the articular cartilage source of the stem cells for clonal expansion and the zonal location of the chondrocyte pool with high proliferative activity. METHODS: The New Zealand white rabbit served as our animal model. The analysis was confined to the high-weight-bearing (central) areas of the medial and lateral femoral condyles. After birth, the articular cartilage layer was evaluated morphologically at monthly intervals from the first to the eighth postnatal month, when this species attains skeletal maturity. The overall height of the articular cartilage layer at each juncture was measured. The growth performance of the articular cartilage layer was assessed by calcein labelling, which permitted an estimation of the daily growth rate of the epiphyseal bone and its monthly length-gain. The slowly proliferating stem-cell pool was identified immunohistochemically (after labelling with bromodeoxyuridine), and the rapidly proliferating chondrocyte population by autoradiography (after labelling with (3)H-thymidine). RESULTS: The growth activity of the articular cartilage layer was highest 1 month after birth. It declined precipitously between the first and third months, and ceased between the third and fourth months, when the animal enters puberty. The structural maturation of the articular cartilage layer followed a corresponding temporal trend. During the first 3 months, when the articular cartilage layer is undergoing structural reorganization, the net length-gain in the epiphyseal bone exceeded the height of the articular cartilage layer. This finding indicates that the postnatal reorganization of articular cartilage from an immature isotropic to a mature anisotropic structure is not achieved by a process of internal remodelling, but by the resorption and neoformation of all zones except the most superficial (stem-cell) one. The superficial zone was found to consist of slowly dividing stem cells with bidirectional mitotic activity. In the horizontal direction, this zone furnishes new stem cells that replenish the pool and effect a lateral expansion of the articular cartilage layer. In the vertical direction, the superficial zone supplies the rapidly dividing, transit-amplifying daughter-cell pool that feeds the transitional and upper radial zones during the postnatal growth phase of the articular cartilage layer. CONCLUSIONS: During postnatal development, mammalian articular cartilage fulfils a dual function, viz., it acts not only as an articulating layer but also as a surface growth plate. In the lapine model, this growth activity ceases at puberty (3-4 months of age), whereas that of the true (metaphyseal) growth plate continues until the time of skeletal maturity (8 months). Hence, the two structures are regulated independently. The structural maturation of the articular cartilage layer coincides temporally with the cessation of its growth activity - for the radial expansion and remodelling of the epiphyseal bone - and with sexual maturation. That articular cartilage is physiologically reorganized by a process of tissue resorption and neoformation, rather than by one of internal remodelling, has important implications for the functional engineering and repair of articular cartilage tissue.
Resumo:
Clinical application of injectable ceramic cement in comminuted fractures revealed penetration of the viscous paste into the joint space. Not much is known on the fate of this cement and its influence on articular tissues. The purpose of this experimental study was to assess these unknown alterations of joint tissues after intra-articular injection of cement in a rabbit knee. Observation periods were from 1 week up to 24 months, with three rabbits per group. Norian SRS cement was injected into one knee joint, the contralateral side receiving the same volume of Ringers' solution. Light microscopic evaluation of histologic sections was performed, investigating the appearance of the cement, inflammatory reactions, and degenerative changes of the articular surface. No signs of pronounced acute or chronic inflammation were visible. The injected cement was mainly found as a single particle, anterior to the cruciate ligaments. It became surrounded by synovial tissues within 4 weeks and showed signs of superficial resorption. In some specimens, bone formation was seen around the cement. Degeneration of the articular surface showed no differences between experimental and control side, and no changes over time became apparent. No major degenerative changes were induced by the injected cement. The prolonged presence of cement still seems to make it advisable to remove radiologically visible amounts from the joint space.
Resumo:
Osteoarthritis due to cranial cruciate ligament (CCL) rupture or hip dysplasia is one of the most important causes of chronic lameness in dogs. This study aimed at comparing nitric oxide (NO) production by the CCL with that of the femoral head ligament (FHL) and the medial collateral ligament (MCL), and investigating the pathway of NO production and the concomitant metalloproteinase (MMP) activity in the presence or absence of an inflammatory stimulus. Ligaments of normal dogs were subjected to different stimuli, and NO and MMP activity from explant culture supernatants were compared. The results showed that in explant cultures of the canine CCL more NO was produced than in those of the other two ligaments. A higher level of NO was produced when CCLs were exposed to the inducible nitric oxide synthase (iNOS)-inducing cocktail TNF/IL-1/LPS, and NO synthesis could be inhibited by both l-NMMA, a general nitric oxide synthase (NOS) inhibitor and l-NIL, a specific iNOS inhibitor. However, a correlation between NO synthesis and iNOS expression levels as determined by immunohistochemistry was not observed. In contrast to CCL, no evidence for iNOS-dependent NO synthesis was observed for MCL and FHL. The CCL produced less MMP than MCL and FHL, and no correlation between MMP and NO could be demonstrated. MMP activity in the CCL increased significantly after 48 h of incubation with the inflammatory stimulus. The results suggest that in canine osteoarthritis NO synthesized by canine CCL plays a more important role in the pathogenesis of osteoarthritis of the stifle than that synthesized by FHL and MCL.
Resumo:
In this study we investigated whether expanded goat chondrocytes have the capacity to generate cartilaginous tissues with biochemical and biomechanical properties improving with time in culture. Goat chondrocytes were expanded in monolayer with or without combinations of FGF-2, TGF-beta1, and PDGFbb, and the postexpansion chondrogenic capacity assessed in pellet cultures. Expanded chondrocytes were also cultured for up to 6 weeks in HYAFF-M nonwoven meshes or Polyactive foams, and the resulting cartilaginous tissues were assessed histologically, biochemically, and biomechanically. Supplementation of the expansion medium with FGF-2 increased the proliferation rate of goat chondrocytes and enhanced their postexpansion chondrogenic capacity. FGF-2-expanded chondrocytes seeded in HYAFF-M or Polyactive scaffolds formed cartilaginous tissues with wet weight, glycosaminoglycan, and collagen content, increasing from 2 days to 6 weeks culture (up to respectively 2-, 8-, and 41-fold). Equilibrium and dynamic stiffness measured in HYAFF M-based constructs also increased with time, up to, respectively, 1.3- and 16-fold. This study demonstrates the feasibility to engineer goat cartilaginous tissues at different stages of development by varying culture time, and thus opens the possibility to test the effect of maturation stage of engineered cartilage on the outcome of cartilage repair in orthotopic goat models.
Resumo:
In this study, we investigated if monolayer expansion of adult human articular chondrocytes (AHAC) on specific substrates regulates cell phenotype and post-expansion multilineage differentiation ability. AHAC isolated from cartilage biopsies of five donors were expanded on plastic dishes (PL), on dishes coated with collagen type II (COL), or on slides coated with a ceramic material (Osteologic, OS). The phenotype of expanded chondrocytes was assessed by flow cytometry and real-time RT-PCR. Cells were then cultured in previously established conditions promoting differentiation toward the chondrogenic or osteogenic lineage. AHAC differentiation was assessed histologically, biochemically, and by real-time RT-PCR. As compared to PL-expanded AHAC, those expanded on COL did not exhibit major phenotypic changes, whereas OS-expanded cells expressed (i) higher bone sialoprotein (BSP) (22.6-fold) and lower collagen type II (9.3-fold) mRNA levels, and (ii) lower CD26, CD90 and CD140 surface protein levels (1.4-11.1-fold). Following chondrogenic differentiation, COL-expanded AHAC expressed higher mRNA levels of collagen type II (2.3-fold) and formed tissues with higher glycosaminoglycan (GAG) contents (1.7-fold), whereas OS-expanded cells expressed 16.5-fold lower collagen type II and generated pellets with 2.0-fold lower GAG contents. Following osteogenic differentiation, OS-expanded cells expressed higher levels of BSP (3.9-fold) and collagen type I (2.8-fold) mRNA. In summary, AHAC expansion on COL or OS modulated the de-differentiated cell phenotype and improved the cell differentiation capacity respectively toward the chondrogenic or osteogenic lineage. Phenotypic changes induced by AHAC expansion on specific substrates may mimic pathophysiological events occurring at different stages of osteoarthritis and may be relevant for the engineering of osteochondral tissues.
Resumo:
PURPOSE: To perform baseline T(2) mapping of the hips of healthy volunteers, focusing on topographic variation, because no detailed study has involved hips. T(2) mapping is a quantitative magnetic resonance imaging (MRI) technique that evaluates cartilage matrix components. MATERIALS AND METHODS: Hips of 12 healthy adults (six men and six women; mean age = 29.5 +/- 4.9 years) were studied with a 3.0-Tesla MRI system. T(2) measurement in the oblique-coronal plane used a multi-spin-echo (MSE) sequence. Femoral cartilage was divided into 12 radial sections; acetabular cartilage was divided into six radial sections, and each section was divided into two layers representing the superficial and deep halves of the cartilage. T(2) of these sections and layers were measured. RESULTS: Femoral cartilage T(2) was the shortest (-20 degrees to 20 degrees and -10 degrees to 10 degrees , superficial and deep layers), with an increase near the magic angle (54.7 degrees ). Acetabular cartilage T(2) in both layers was shorter in the periphery than the other parts, especially at 20 degrees to 30 degrees . There were no significant differences in T(2) between right and left hips or between men and women. CONCLUSION: Topographic variation exists in hip cartilage T(2) in young, healthy adults. These findings should be taken into account when T(2) mapping is applied to patients with degenerative cartilage. J. Magn. Reson. Imaging 2007;26:165-171. (c) 2007 Wiley-Liss, Inc.
Resumo:
PURPOSE: The aim of this study was to investigate the effect of magnetization transfer on multislice T(1) and T(2) measurements of articular cartilage. MATERIALS AND METHODS: A set of phantoms with different concentrations of collagen and contrast agent (Gd-DTPA(2-)) were used for the in vitro study. A total of 20 healthy knees were used for the in vivo study. T(1) and T(2) measurements were performed using fast-spin-echo inversion-recovery (FSE-IR) sequence and multi-spin-echo (MSE) sequence, respectively, in both in vitro and in vivo studies. We investigated the difference in T(1) and T(2) values between that measured by single-slice acquisition and that measured by multislice acquisition. RESULTS: Regarding T(1) measurement, a large drop of T(1) in all slices and also a large interslice variation in T(1) were observed when multislice acquisition was used. Regarding T(2) measurement, a substantial drop of T(2) in all slices was observed; however, there was no apparent interslice variation when multislice acquisition was used. CONCLUSION: This study demonstrated that the adaptation of multislice acquisition technique for T(1) measurement using FSE-IR methodology is difficult and its use for clinical evaluation is problematic. In contrast, multislice acquisition for T(2) measurement using MSE was clinically applicable if inaccuracies caused by multislice acquisition were taken into account. J. Magn. Reson. Imaging 2007;26:109-117. (c) 2007 Wiley-Liss, Inc.
Resumo:
OBJECTIVE: To identify markers associated with the chondrogenic capacity of expanded human articular chondrocytes and to use these markers for sorting of more highly chondrogenic subpopulations. METHODS: The chondrogenic capacity of chondrocyte populations derived from different donors (n = 21) or different clonal strains from the same cartilage biopsy specimen (n = 21) was defined based on the glycosaminoglycan (GAG) content of tissues generated using a pellet culture model. Selected cell populations were analyzed by microarray and flow cytometry. In some experiments, cells were sorted using antibodies against molecules found to be associated with differential chondrogenic capacity and again assessed in pellet cultures. RESULTS: Significance Analysis of Microarrays indicated that chondrocytes with low chondrogenic capacity expressed higher levels of insulin-like growth factor 1 and of catabolic genes (e.g., matrix metalloproteinase 2, aggrecanase 2), while chondrocytes with high chondrogenic capacity expressed higher levels of genes involved in cell-cell or cell-matrix interactions (e.g., CD49c, CD49f). Flow cytometry analysis showed that CD44, CD151, and CD49c were expressed at significantly higher levels in chondrocytes with higher chondrogenic capacity. Flow cytometry analysis of clonal chondrocyte strains indicated that CD44 and CD151 could also identify more chondrogenic clones. Chondrocytes sorted for brighter CD49c or CD44 signal expression produced tissues with higher levels of GAG per DNA (up to 1.4-fold) and type II collagen messenger RNA (up to 3.4-fold) than did unsorted cells. CONCLUSION: We identified markers that allow characterization of the capacity of monolayer-expanded chondrocytes to form in vitro cartilaginous tissue and enable enrichment for subpopulations with higher chondrogenic capacity. These markers might be used as a means to predict and possibly improve the outcome of cell-based cartilage repair techniques.
Resumo:
Objective-To evaluate local tissue compatibility of doxycycline hyclate (DOX) in antebrachiocarpal joints of calves. Animals-10 healthy calves between 80 and 110 kg. Procedures-Calves were assigned to 2 treatment groups. Calves in groups DOX(low) and DOX(high) were administered 5 and 10 mg of DOX, respectively, locally in 1 antebrachiocarpal joint. The contralateral joint served as a control joint and was injected with 0.9% NaCl solution. General and local clinical findings were scored. Several variables were assessed in blood and synovial fluid for 9 days. Calves were euthanatized and pathologic changes and drug residues evaluated. Results-Throughout the study, none of the calves had clinical changes or abnormal hematologic values. Significant differences between treatment and control joints were evident only for matrix metalloproteinases at 0.5 hours after injection, with less activity for the DOX-treated joints in both treatment groups. Values for all synovial fluid variables, except nitric oxide, increased significantly during the first 12 to 72 hours after arthrocentesis in control and DOX-treated joints. Histologic examination revealed minimal infiltration of inflammatory cells independent of the treatment. No drug residues were detected 9 days after arthrocentesis in any tissues obtained from the liver, kidneys, fat, and skeletal muscles. Conclusions and Clinical Relevance-DOX had excellent intra-articular compatibility in healthy calves. Arthrocentesis induced a mild transient increase of inflammatory mediators in the synovial fluid. Significant decreases in matrix metalloproteinase activity in DOX-treated joints may indicate a potential chondroprotective effect of DOX.