497 resultados para resinas
Resumo:
The crude glycerine is a raw material that can be used in a wide variety of products. Even with all the impurities inherent in the process of being obtained, the crude glycerin is already in a marketable product. However, the market is much more favorable to the commercialization of purified glycerine. The glycerin is a byproduct gotten from the process of transesterification of waste oils and fats in the production of biodiesel. More recently, the deployment of the new Federal Law of Brazil, related to the implementation of energy resources, forces, from 2008, the increase of 2% biodiesel in diesel common with prospects for 5% (B5). Therefore, it is indispensable that new routes of purification as well as new markets are developed. The objective of this work was to purify, through ion exchange, the crude glycerin, obtained from the reaction of transesterification of cottonseed oil. The cottonseed oil was characterized as the fatty acid composition and physical-chemical properties. The process of ion exchange was conducted in batch. In this process were used strong cation, low anion resins and a mixed resin used to de-ionize water. The purified glycerin was characterized as the content of metals. Tests were performed with activated charcoal adsorption, and for this, it was made tests of time contact with coal as well as quantity of coal used. The time of activation, the amount of the activation solution, the contact time of the glycerol solution in resins, the amount and type of resin applied were evaluated. Considering the analysis made with activated charcoal, when the glycerin solution was treated using the resins individually it was observed that in the conditions for treatment with 10 g of resin, 5 hours of contact with each resin and 50 mL of glycerin solution, its conductivity decreased to a cationic resin, increased to the anionic resin and had a variable value with respect to resin mixed. In the treatment in series, there was a constant decrease in the conductivity of the solution of glycerin. Considering two types of treatment, in series and individually, the content of glycerol in glycerin pre-purified solution with the different resins varied from 12,46 to 29.51% (diluted solution). In analysis performed without the use of activated charcoal, the behavior of the conductivity of the solution of glycerin were similar to results for treatment with activated charcoal, both in series as individually. The solution of glycerin pre-purified had a glycerol content varying from 8.3 to 25.7% (diluted solution). In relation to pH, it had a behavior in accordance with the expected: acid for the glycerin solution treated with cationic resin, basic when the glycerin solution was treated with the anionic resin and neutral when treated with the mixed resin, independent of the kind of procedure used (with or without coal, resins individually or in series). In relation to the color of the glycerin pre-purified solution, the resin that showed the best result was the anionic (colorless), however this does not mean that the solution is more in pure glycerol. The chromatographic analysis of the solutions obtained after the passage through the resins indicated that the treatment was effective by the presence of only one component (glycerol), not considering the solvent of the analysis
Resumo:
The city of Natal comprises an area of about 170 km² (65,63 squares miles). The Dunas-Barreiras Aquifer is the most important reservoir of the coastal basin of RN. It is being responsible for the water supplying of about 70% of the population, however, due to the sewage disposal system by cesspools and drains, it is presently affected in a great extent by nitrates contamination. Thus, the present work proposes to research the utilization of contaminated water by nitrates of this fountainhead and find cost of the potable water through the ionic exchange technology. This technology consists in the removal of mineral salts by the exchange of cations for one ion of hydrogen (H+), through the passage of water by cationic resin bed and, secondly, by the exchange of the anions for hydroxyl ions (OH-) through a anionic resin bed. The obtained results have showed the waters derived from fountains, big water holes and shallow wells were microbiologically contaminated, while the waters derived from deep wells (above 70 m 76,58 yards) were free of contamination. Thus, only these ones are suitable to the use of ionic technology. The experiments were conducted with the resin IMAC-HP-555 such as kinetic, thermodynamic, and adsorption by fixed bed studies, being obtained several project variables for the experimental column, as follow: work temperature of 25oC; resin maximum capacity maximum e mean of adsorption ==0,01692 g NO3-1/g R e 0,0110 g NO3-1/g R, respectively. On the experimental column were performed breakthrough tests which pointed for an average ideal average speed of work of 13.2 m / h, with an average efficiency of 45% of adsorption, an optimal concentration of NaCl desorption of 8%, and an ideal desorption time of 80 minutes for the equilibrium conditions of water from the Dunas-Barreiras aquifer. Scale projection for ion-exchange column for denitrification, for these variables, using a computer modeling programme, to project the column of ion exchange ROREX-420/2000, obtained a cost for the drinking water denitrified by this system of R$ 0,16 / m3
Resumo:
Seeking a greater appreciation of cheese whey was developed to process the hydrogenation of lactose for the production of lactitol, a polyol with high added value, using the catalyst Ni / activated carbon (15% and 20% nickel), the nitride Mo2N, the bimetallic carbide Ni-Mo/ activated carbon and carbide Mo2C. After synthesis, the prepared catalysts were analyzed by MEV, XRD, laser granulometry and B.E.T. The reactor used in catalytic hydrogenation of lactose was the type of bed mud with a pressure (68 atm), temperature (120 oC) and stirring speed (500 rpm) remained constant during the experiments. The system operated in batch mode for the solid and liquid and semi-continuous to gas. Besides the nature of the catalyst, we studied the influence of pH of reaction medium for Mo2C carbide as well as evaluating the character of the protein inhibitor and chloride ions on the activity of catalysts Ni (20%)/Activated Carbon and bimetallic carbide Ni-Mo/Activated Carbon. The decrease in protein levels was performed by coagulation with chitosan and adsorption of chloride ions was performed by ion exchange resins. In the process of protein adsorption and chloride ions, the maximum percentage extracted was about 74% and 79% respectively. The micrographs of the powders of Mo2C and Mo2N presented in the form of homogeneous clusters, whereas for the catalysts supported on activated carbon, microporous structure proved impregnated with small particles indicating the presence of metal. The results showed high conversion of lactose to lactitol 90% for the catalyst Ni (20%)/Activated Carbon at pH 6 and 46% for the carbide Mo2C pH 8 (after addition of NH4OH) using the commercial lactose. Monitoring the evolution of the constituents present in the reaction medium was made by liquid chromatography. A kinetic model of heterogeneous Langmuir Hinshelwood type was developed which showed that the estimated constants based catalysts promoted carbide and nitride with a certain speed the adsorption, desorption and production of lactitol
Resumo:
Expanded Bed Adsorption plays an important role in the downstream processing mainly for reducing costs as well as steps besides could handling cells homogenates or fermentation broth. In this work Expanded Bed Adsorption was used to recover and purify whey proteins from coalho cheese manufacture using Streamline DEAE and Streamline SP both ionic resins as well as a hydrophobic resin Streamline Phenyl. A column of 2.6 cm inner diameter with 30 cm in height was coupled to a peristaltic pump. Hydrodynamics study was carried out with the three resins using Tris-HCl buffer in concentration of 30, 50 and 70 mM, with pH ranging from 7.0 to 8.0. In this case, assays of the expansion degree as well as Residence Time Distribution (RTD) were carried out. For the recovery and purification steps, a whey sample of 200 mL, was submitted to a column with 25mL of resin previously equilibrated with Tris/HCl (50 mM, pH 7.0) using a expanded bed. After washing, elution was carried out according the technique used. For ionic adsorption elution was carried out using 100 mL of Tris/HCl (50 mM, pH 7.0 in 1M NaCl). For Hydrophobyc interaction elution was carried out using Tris/HCl (50 mM, pH 7.0). Adsorption runs were carried out using the three resins as well as theirs combination. Results showed that for hydrodynamics studies a linear fit was observed for the three resins with a correlation coefficient (R2) about 0.9. In this case, Streamline Phenyl showed highest expansion degree reaching an expansion degree (H0/H) of 2.2. Bed porosity was of 0.7 when both resins Streamline DEAE and Streamline SP were used with StremLine Phenyl showing the highest bed porosity about 0.75. The number of theorical plates were 109, 41.5 and 17.8 and the axial dipersion coefficient (Daxial) were 0.5, 1.4 and 3.7 x 10-6 m2/s, for Streamline DEAE, Streamline SP and Streamline Phenyl, respectively. Whey proteins were adsorved fastly for the three resins with equilibrium reached in 10 minutes. Breakthrough curves showed that most of proteins stays in flowthrough as well as washing steps with 84, 77 and 96%, for Streamline DEAE, Streamline SP and Streamline Phenyl, respectively. It was observed protein peaks during elution for the three resins used. According to these peaks were identified 6 protein bands that could probably be albumin (69 KDa), lactoferrin (76 KDa), lactoperoxidase (89 KDa), β-lactoglobulin (18,3 KDa) e α-lactoalbumin (14 KDa), as well as the dimer of beta-lactoglobulin. The combined system compound for the elution of Streamline DEAE applied to the Streamline SP showed the best purification of whey proteins, mainly of the α-lactoalbumina
Resumo:
Perovskite-like ceramic materials present the general formula ABO3, where A is a rare earth element or an alkaline metal element, and B is a transition metal. These materials are strong candidates to assume the position of cathode in Solid Oxide Fuel Cells (SOFC), because they present thermal stability at elevated temperatures and interesting chemical and physical properties, such as superconductivity, dieletricity, magnetic resistivity, piezoelectricity, catalytic activity and electrocatalytic and optical properties. In this work the cathodes of Solid Oxide Fuel Cells with the perovskite structure of La1-xSrxMnO3 (x = 0.15, 0.22, 0.30) and the electrolyte composed of zirconia-stabilized-yttria were synthesized by the Pechini method. The obtained resins were thermal treatment at 300 ºC for 2h and the obtained precursors were characterized by thermal analysis by DTA and TG / DTG. The powder precursors were calcined at temperatures from 450 to 1350ºC and were analyzed using XRD, FTIR, laser granulometry, XRF, surface area measurement by BET and SEM methods. The pellets were sintered from the powder to the study of bulk density and thermal expansion
Resumo:
In this work, the plant species Copernicia prunifera (Miller) H. E. Moore (carnauba), naturally occurring which prevails in the northeast region of Brazil was the subject of studies aiming its use as external coating of pipelines used in petroleum industry. The part of the plant worked were the leaves, also called straw, which were coated with resinous material. For this purpose, it was necessary to evaluate the effectiveness of the use of acrylic resins in the straw carnauba coating. The properties of the untreated carnauba straw and chemically treated with sodium hydroxide, hexane and carbon tetrachloride were investigated by ATRFTIR, SEM and thermal analysis. The first two techniques showed that treatment with solvents has caused major changes in the straw surface, while the thermal analysis indicated that the sodium hydroxide caused variations in thermal stability of straw constituents. Water absorption measurements showed that treatments have accelerated the absorption process and the reduction of contact angle values for treated samples with solvents indicated higher hidrophilicity of straw. The tensile tests showed lower values of elastic modulus and tensile strength for treated samples. Furthermore, coatings using pure commercial resins A and B as well as the formulations with clay were applied in straw and they were examined once again through thermal analysis, water absorption measurements, contact angle and mechanical tests. To analyze the effect of heat ageing, samples were subjected to tensile tests again in order to assess its resistance. The results showed that the resins/clay formulations increased thermal stability of straw, they promoted a good impermeabilization and caused significant decrease in the values of elastic modulus and tensile strength. Evaluating the ageing effect on the mechanical properties, it has been showed good recovery to the coated straw with the formulations A 60 and A 80% in modulus and tensile strength values and elongation at break values have remained very close. It is thus concluded that the carnauba straw can be used as a coating of pipelines with significant cost savings, since there is no need for pretreatment for its use and shows itself as a viable biotechnology alternative, contributing to the quality of coatings material and environment preservation.
Resumo:
Enzymatic synthesis of peptides using proteases has attracted a great deal of attention in recent years. One key challenge in peptide synthesis is to find supports for protease immobilization capable of working in aqueous medium at high performance, producing watersoluble oligopeptides. At present, few reports have been described using this strategy. Therefore, the aim of this thesis was to immobilize proteases applying different methods (Immobilization by covalent bound, entrapment onto polymeric gels of PVA and immobilization on glycidil metacrylate magnetic nanoparticles) in order to produce water-soluble oligopeptides derived from lysine. Three different proteases were used: trypsin, α-chymotrypsin and bromelain. According to immobilization strategies associated to the type of protease employed, trypsin-resin systems showed the best performance in terms of hydrolytic activity and oligopeptides synthesis. Hydrolytic activities of the free and immobilized enzymes were determined spectrophotometrically based on the absorbance change at 660 nm at 25 °C (Casein method). Calculations of oligolysine yield and average degree of polymerization (DPavg) were monitored by 1H-NMR analysis. Trypsin was covalently immobilized onto four different resins (Amberzyme, Eupergit C, Eupergit CM and Grace 192). Maximum yield of bound protein was 92 mg/g, 82 mg/g and 60 mg/g support for each resin respectively. The effectiveness of these systems (Trypsin-resins) was evaluated by hydrolysis of casein and synthesis of water-soluble oligolysine. Most systems were capable of catalyzing oligopeptide synthesis in aqueous medium, albeit at different efficiencies, namely: 40, 37 and 35% for Amberzyme, Eupergit C and Eupergit CM, respectively, in comparison with free enzyme. These systems produced oligomers in only 1 hour with DPavg higher than free enzyme. Among these systems, the Eupergit C-Trypsin system showed greater efficiency than others in terms of hydrolytic activity and thermal stability. However, this did not occur for oligolysine synthesis. Trypsin-Amberzyme proved to be more successful in oligopeptide synthesis, and exhibited excellent reusability, since it retained 90% of its initial hydrolytic and synthetic activity after 7 reuses. Trypsin hydrophobic interactions with Amberzyme support are responsible for protecting against strong enzyme conformational changes in the medium. In addition, the high concentration of oxirane groups on the surface promoted multi-covalent linking and, consequently, prevented the immobilized enzyme from leaching. The aforementioned results suggest that immobilized Trypsin on the supports evaluated can be efficiently used for oligopeptides synthesis in aqueous media
Resumo:
Among the non-invasive techniques employed in the prevention of caries highlights the sealing pits and fissures which is a conservative maneuver, in order to obliterate them to protect them from attack acid bacteria. Influenced by the studies of pre-heating composite resin, which has experienced great improvement in some of their physical properties, this study aimed to evaluate in vitro the superficial and internal marginal adaptation of different materials and sealants in pre-heating or not. A total of 40 extracted human third molars (n=10) that had their occlusal surfaces prepared to receive sealant. We tested two types of sealing materials: resin sealant (Fluoroshield) and low-viscosity resin (Permaflo), where 50% of previously received heated material and the other half received sealant material at room temperature. All samples were subjected to thermal cycling and pH, simulating a cariogenic oral environment, and later were analyzed appliance OCT (optical coherence tomography). The images obtained alterations were recorded and analyzed statistically. Change was considered as the emergence of bubbles, gaps and cracks in the sealant. Comparisons of the same material, assessing the fact that it is not sealed or preheated material, as well as comparisons between different materials subjected to the same temperature were carried out. The nonparametric Tukey test was used (p < 0,05). The results showed that there was statistically significant difference between both the materials analyzed, as between the situations in which the sealant material was submitted (preheated or not). On the issue of marginal adaptation and internal surface, seen through Optical coherence tomography, may suggest that there is a difference between the use of one type or another of the sealing material analyzed, with superiority attributed to resin Permaflo compared to sealant Fluroshield, telling is the same for the different techniques used
Resumo:
Foi avaliada a resistência de união entre dentes e base de dentadura, ambos de resina acrílica. Os dentes foram incluídos em blocos cilíndricos de resina e, posteriormente, torneados, para se obterem cilindros de 5mm de diâmetro. Sobre a extremidade do dente, era adaptado um padrão de cera de mesmo diâmetro, que, após inclusão na mufla, era substituído por resina acrílica termicamente ativada pelo método de processamento convencional de base de dentadura. Como variáveis, usaram-se duas marcas de dentes, duas fases de inclusão (plástica e borrachóide) e aplicação ou não de detergente e monômero sobre os dentes. Os corpos-de-prova, antes dos ensaios de ruptura por tração, foram armazenados em água destilada, a 37ºC, por 2 semanas. Os resultados mostraram que: marca de dente e fase de condensação não influíram nos resultados; somente o uso de detergente ou de monômero aumenta a retentividade e o seu uso conjunto apresenta efeito acumulativo.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A utilização agrícola de biossólidos tem sido muito incentivada, mas, como esses resíduos apresentam composição química variada, o valor agronômico e os efeitos sobre características indicadoras de qualidade do solo precisam ser avaliados caso a caso, a fim de estabelecer normas de segurança para uso desses materiais. Neste trabalho foram avaliadas características biológicas, após a aplicação, por dois anos consecutivos, de doses crescentes (0, 6, 12, 18 e 24 t ha-1 base seca) de um biossólido gerado por uma indústria de fibras e resinas PET e da adubação mineral completa no cultivo de milho, em um Cambissolo distrófico, comparados aos de uma área adjacente, sob Brachiaria sp. e sem cultivo nos últimos 10 anos, usada como referência. Os valores de C e N da biomassa microbiana, a respiração basal e as atividades das enzimas urease e beta-glicosidase e da hidrólise do diacetato de fluoresceína (FDA) aumentaram, enquanto a atividade da fosfatase ácida diminuiu com a elevação das doses de biossólido, porém estas não tiveram efeito sobre o quociente metabólico (qCO2). A diminuição da atividade da fosfatase se deveu ao aumento da disponibilidade de P no solo, não caracterizando efeito adverso da aplicação do biossólido. Com aplicação de 12 t ha-1 de biossólido (recomendação agronômica), a respiração e a hidrólise da FDA foram maiores e a atividade da fosfatase foi menor que a obtida no solo com adubação mineral, mas as demais características avaliadas não diferiram entre estes tratamentos. A colonização micorrízica de Brachiaria sp. não diferiu entre plantas de crescimento espontâneo nas parcelas anteriormente cultivadas com milho e aquelas da área adjacente. Apesar do menor número de esporos, verificou-se enriquecimento de espécies de fungos micorrízicos arbusculares (FMAs) nas parcelas cultivadas. O carbono orgânico (Corg) e a biomassa microbiana apresentaram alta correlação com os demais parâmetros avaliados, indicando que as alterações na quantidade e qualidade da matéria orgânica, promovidas pela aplicação do biossólido, refletiram na dinâmica da microbiota e influenciaram positivamente os parâmetros biológicos de qualidade do solo.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Este trabalho apresenta um estudo sistemático sobre a síntese e caracterização de pós de Na2TiSiO5. Foram estudadas as propriedades estruturais e morfológicas dos pós por intermédio de difração de raios X, espectroscopia Raman e microscopia eletrônica de varredura. As amostras foram produzidas por meio de duas rotas sintéticas distintas baseadas em métodos tipo Pechini e submetidas a diferentes tratamentos térmicos. Medidas de espectroscopia Raman nas resinas poliméricas foram feitas visando verificar a influência das diferentes rotas utilizadas na síntese dos pós. Com os dados de difração de raios X foi feito um estudo da evolução das fases cristalográficas. A estrutura cristalina das amostras foi analisada por meio de refinamento Rietveld. Por fim, a morfologia dos compostos de Na2TiSiO5 foi examinada por microscopia eletrônica de varredura. Os resultados obtidos mostraram que é possível melhorar a qualidade das amostras de Na2TiSiO5 alterando-se a rota sintética utlizada.
Resumo:
Objective: To evaluate and compare the fracture strength of different composite resins used for core buildup. Method: Thirty-six bovine teeth were decoronated at the cervical third to standardize the length of specimens at 20 mm. Under constant irrigation, the canals were prepared with #5 Largo drills corresponding to the size and diameter of #3 Reforpost fiberglass post. The posts were cemented with Enforce resin sealer, being 16 mm inside the root canal and 4 mm outside the root canal, and the material was light-activated for 30 seconds at each side. The specimens were divided into 3 groups (n=12), in which cores (4 mm diameter and 5 mm high) were prepared from a prefabricated standard with three types of composite resins: Group 1: Z100 (3M), Group 2: Z250 (3M) and Group 3: P60 (3M). The specimens were fixed in a cylindrical device with an adaptor at 45o inclination. This device was adapted to a universal testing machine (EMIC) to simulate the force until fracture of the specimen. Data were subjected to ANOVA (p<0.05). Results: The Z250 resin cores presented the highest mean fracture strength (45.453 kgf), while the mean fracture strengths in Group 1 and Group 3 were 38.014 and 39.506 kgf, respectively. P60 caused the largest number of root fractures. Conclusion: Considering the characteristics and properties of the tested resins, Z250 appears as the most indicated for core buildup.
Resumo:
Pós-graduação em Biologia Geral e Aplicada - IBB