945 resultados para <HYDROXY(TOSYLOXY)IODO>BENZENE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The disilylated compound 1,4-bis(trimethylsilyl)-2,3,5,6-tetrakis((dimethylamino)methyl)benzene, (Me(3)Si)(2)C2N4, 4, can be electrophilically palladated selectively at the C-Si bonds to afford the neutral 1,4-bis(palladium) complex [(AcOPd)(2)(C2N4)], from which the dicationic [(LPd)(2)(C2N4)](2+) (L = MeCN) organometallic species are accessible. The monosilylated species (Me(3)Si)(H)C2N4, 5, can be used for the preparation of the dicationic heterodinuclear platinum(II)-palladium(II) species [(LPd)(LPt)(C2N4)](2+) (L = MeCN) via a sequence of transmetalation of the organolithium derivative of 5 with [PtCl2(SEt(2))(2)], followed by a C-Si bond palladation reaction.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesoporous silica grown using [3-(trimethoxysilyl)propyl]octadecyldimethylammonium chloride as the mesoporogen in the presence of Fe and Al is X-ray amorphous, but contains very small domains with features of MFI zeolite as evidenced by IR and Raman spectroscopy. When applied as a catalyst, this amorphous sample shows good performance in the selective oxidation of benzene using nitrous oxide. Addition of tetrapropylammonium as structure directing agent to the as-synthesized mesoporous silica and subsequent dry gel conversion results in the formation of hierarchical Fe/ZSM-5 zeolite. During dry gel conversion the wormhole mesostructure of the initial material is completely lost. A dominant feature of the texture after crystallization is the high interconnectivity of micropores and mesopores. Substantial redistribution of low-dispersed Fe takes place during dry gel conversion towards highly dispersed isolated Fe species outside the zeolite framework. The catalytic performance in the oxidation of benzene to phenol of these highly mesoporous zeolites is appreciably higher than that of the parent material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hierarchical Fe/ZSM-5 zeolites were synthesized with a diquaternary ammonium surfactant containing a hydrophobic tail and extensively characterized by XRD, Ar porosimetry, TEM, DRUV-Vis, and UV-Raman spectroscopy. Their catalytic activities in catalytic decomposition of NO and the oxidation of benzene to phenol with NO as the oxidant were also determined. The hierarchical zeolites consist of thin sheets limited in growth in the b-direction (along the straight channels of the MFI network) and exhibit similar high hydrothermal stability as a reference Fe/ZSM-5 zeolite. Spectroscopic and catalytic investigations point to subtle differences in the extent of Fe agglomeration with the sheet-like zeolites having a higher proportion of isolated Fe centers than the reference zeolite. As a consequence, these zeolites have a somewhat lower activity in catalytic NO decomposition (catalyzed by oligomeric Fe), but display higher activity in benzene oxidation (catalyzed by monomeric Fe). The sheet-like zeolites deactivate much slower than bulk Fe/ZSM-5, which is attributed to the much lower probability of secondary reactions of phenol in the short straight channels of the sheets. The deactivation rate decreases with decreasing Fe content of the Fe/ZSM-5 nanosheets. It is found that carbonaceous materials are mainly deposited in the mesopores between the nanosheets and much less so in the micropores. This contrasts the strong decrease in the micropore volume of bulk Fe/ZSM-5 due to rapid clogging of the continuous micropore network. The formation of coke deposits is limited in the nanosheet zeolites because of the short molecular trafficking distances. It is argued that at high Si/Fe content, coke deposits mainly form on the external surface of the nanosheets. © 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetylene coupling to benzene on the Pd(lll) surface is greatly enhanced by the presence of catalytically inert Au atoms. LEED and Auger spectroscopy show that progressive annealing of Au overlayers on Pd(lll) leads to the formation of a series of random surface alloys with continuously varying composition. Cyclization activity is a strong function of surface composition-the most efficient catalyst corresponds to a surface of composition similar to 85% Pd. CO TPD and HREELS data show that acetylene cyclization activity is not correlated with the availability of singleton Pd atoms, nor just with the presence of 3-fold pure Pd sites-the preferred chemisorption site for C2H2 on Pd{111}. The data can be quantitatively rationalized in terms of a simple model in which catalytic activity is dominated by Pd6Au and Pd-7 surface ensembles, allowance being made for the known degree to which pure Pd{111} decomposes the reactant and product molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enantiopure cis-dihydrodiol bacterial metabolites of substituted benzene substrates were used as precursors, in a chemoenzymatic synthesis of the corresponding benzene oxides and of a substituted oxepine, via dihydrobenzene oxide intermediates. A rapid total racemization of the substituted benzene 2,3-oxides was found to have occurred, via their oxepine valence tautomers, in accord with predictions and theoretical calculations. Reduction of a substituted arene oxide to yield a racemic arene hydrate was observed. Arene hydrates have also been synthesised, in enantiopure form, from the corresponding dihydroarene oxide or trans-bromoacetate precursors. Biotransformation of one arene hydrate enantiomer resulted in a toluene-dioxygenase catalysed cis-dihydroxylation to yield a benzene cis-triol metabolite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two recent scanning probe techniques were applied to investigate the bipolar twin state of 4-iodo-4'-nitrobiphenyl (INBP) crystals. Solution grown crystals of INBP show typically a morphology which does not express that of a mono-domain polar structure (Fdd2, mm2). From previous X-ray diffraction a twinning volume ratio of similar to 70 : 30 is now explained by two unipolar domains (Flack parameter: 0.075(29)) of opposite orientation of the molecular dipoles, joined by a transition zone showing a width of similar to 140 mm. Scanning pyroelectric microscopy (SPEM) demonstrates a continuous transition of the polarization P from +P into -P across the zone. Application of piezoelectric force microscopy (PFM) confirms unipolar alignment of INBP molecules down to a resolution of similar to 20 nm. A previously proposed real structure for INBP crystals built from lamellae with antiparallel alignment is thus rejected. Anomalous X-ray scattering was used to determine the absolute molecular orientation in the two domains. End faces of the polar axis 2 are thus made up by NO2 groups. Using a previously determined negative pyroelectric coefficient pc leads to a confirmation also by a SPEM analysis. Calculated values for functional group interactions (D...A), (A...A), (D...D) and the stochastic theory of polarity formation allow us to predict that NO2 groups should terminate corresponding faces. Following the present analysis, INBP may represent a first example undergoing dipole reversal upon growth to end up in a bipolar state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1-Hydroxy-1,2-benziodoxol-3(1H)-one I-oxide prepared by oxidation of o-iodobenzoic acid with potassium bromate forms either a microcrystalline powder, a macrocrystalline material, or a mixture of both forms. This difference in physical form is the source of the difficulty in reproducibly converting 1-hydroxy-1,2-benziodoxol-3(1H)-one 1-oxide to the corresponding I-triacetoxy derivative. A simple method is given for conversion of crystalline 1-hydroxy-1,2-benziodoxol-3(1H)-one 1-oxide to the more reactive powder form, The microcrystalline powder and macrocrystalline material are characterised by X-ray diffraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Letter, an unambiguous synthetic strategy is reported for the preparation of enantiomerically purecis-5-halo-piperazic acid derivatives in single diastereoisomer form. Contrary to the recent report by Shin and co-workers (Chem. Lett. 2001, 1172), in which it is claimed that the Ph3P and N-chlorosuccinimide (NCS)-mediated chlorination of (3R,5S)-trans-N(1),N(2)-di-t-Boc-5-hydroxy-piperazic acid derivative 1proceeds with retention of configuration at C(5) to give 2, we now show that this and related Ph3P-mediated halogenations all occur with SN2 inversion at the alcohol center, as is customary for such reactions. Specifically, we demonstrate that the (3R,5S)-trans-5-Cl-piperazic acid derivative 2 claimed by Shin and co-workers (Chem. Lett. 2001, 1172) is in actual fact the chlorinated (3S,5R)-enantiomer 6, which must have been prepared from the cis-(3S,5S)-alcohol 3, a molecule whose synthesis is not formally described in the Shin paper. We further show here that the cis-(3R,5R)-5-Cl-Piz 13 claimed by Shin and co-workers inChem. Lett. 2001, 1172, is also (3S,5R)-trans-5-Cl-Piz 6. Authentic 13 has now been synthesized by us, for the very first time, here. Since Lindsley and Kennedy have recently utilized the now invalid Shin and co-workers’ retentive Ph3P/NCS chlorination procedure on 1 in their synthetic approach to piperazimycin A (Tetrahedron Lett. 2010, 51, 2493), it follows that their claimed 5-Cl-Piz-containing dipeptide 25 probably has the alternate structure 26, where the 5-Cl-Piz residue has a 3,5-cis-configuration. The aforementioned stereochemical misassignments appear to have come from a mix-up of starting materials by Shin and co-workers (Chem. Lett. 2001, 1172), and an under-appreciation of the various steric and conformational effects that operate in N(2)-acylated piperazic acid systems, most especially rotameric A1,3-strain. The latter has now been unambiguously delineated and defined here under the banner of the A1,3-rotamer effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bacterial bioassay has been developed to assess the relative toxicities of xenobiotics commonly found in contaminated soils, rivers, waters, and ground waters. The assay utilized decline in luminescence of lux- marked Pseudomonas fluorescens on exposure to xenobiotics. Pseudomonas fluorescens is a common bacterium in the terrestrial environment, providing environmental relevance to soil, river, and ground water systems. Three principal environmental contaminants associated with benzene degradation were exposed to the luminescence-marked bacterial biosensor to assess their toxicity individually and in combination. Median effective concentration (EC50) values for decline in luminescence were determined for benzene, catechol, and phenol and were found to be 39.9, 0.77, and 458.6 mg/L, respectively. Catechol, a fungal and bacterial metabolite of benzene, was found to be significantly more toxic to the biosensor than was the parent compound benzene, showing that products of xenobiotic biodegradation may be more toxic than the parent compounds. Combinations of parent compounds and metabolites were found to be significantly more toxic to the bioassay than were the individual compounds themselves. Development of this bioassay has provided a rapid screening system suitable for assessing the toxicity of xenobiotics commonly found in contaminated soil, river, and ground-water environments. The assay can be utilized over a wide pH range and is therefore more applicable to such environmental systems than bioluminescence-based bioassays that utilize marine organisms and can only be applied over a limited pH and salinity range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical activities of hydrophobic substances can determine the windows of environmental conditions over which microbial systems function and the metabolic inhibition of microorganisms by benzene and other hydrophobes can, paradoxically, be reduced by compounds that protect against cellular water stress (Bhaganna et al. in Microb Biotechnol 3:701-716, 2010; Cray et al. in Curr Opin Biotechnol 33:228-259, 2015a). We hypothesized that this protective effect operates at the macromolecule structure-function level and is facilitated, in part at least, by genome-mediated adaptations. Based on proteome profiling of the soil bacterium Pseudomonas putida, we present evidence that (1) benzene induces a chaotrope-stress response, whereas (2) cells cultured in media supplemented with benzene plus glycerol were protected against chaotrope stress. Chaotrope-stress response proteins, such as those involved in lipid and compatible-solute metabolism and removal of reactive oxygen species, were increased by up to 15-fold in benzene-stressed cells relative to those of control cultures (no benzene added). By contrast, cells grown in the presence of benzene + glycerol, even though the latter grew more slowly, exhibited only a weak chaotrope-stress response. These findings provide evidence to support the hypothesis that hydrophobic substances induce a chaotropicity-mediated water stress, that cells respond via genome-mediated adaptations, and that glycerol protects the cell's macromolecular systems. We discuss the possibility of using compatible solutes to mitigate hydrocarbon-induced stresses in lignocellulosic biofuel fermentations and for industrial and environmental applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the catalytic hydrogenation of benzene to cyclohexane, the separation of unreacted benzene from the product stream is inevitable and essential for an economically viable process. In order to evaluate the separation efficiency of ionic liquids (ILs) as a solvent in this extraction processes, the ternary (liquid + liquid) equilibrium of 1-alkyl-3-methylimidazolium hexafluorophosphate, [Cnmim][PF6] (n = 4, 5, 6), with benzene and cyclohexane was studied at T = 298.15 K and atmospheric pressure. The reliability of the experimentally determined tie-line data was confirmed by applying the Othmer–Tobias equation. The solute distribution coefficient and solvent selectivity for the systems studied were calculated and compared with literature data for other ILs and sulfolane. It turns out that the benzene distribution coefficient increases and solvent selectivity decreases as the length of the cation alkyl chain grows, and the ionic liquids [Cnmim][PF6] proved to be promising solvents for benzene–cyclohexane extractive separation. Finally, an NRTL model was applied to correlate and fit the experimental LLE data for the ternary systems studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Separation of benzene and cyclohexane is one of the most important and difficult processes in the petrochemical industry, especially for low benzene concentration. In this work, three ionic liquids (ILs), [Bmim][BF 4], [Bpy][BF 4], and [Bmim][SCN], were investigated as the solvent in the extraction of benzene from cyclohexane. The corresponding ternary liquid-liquid equilibria (LLE) were experimentally determined at T = 298.15 K and atmospheric pressure. The LLE data were correlated with the nonrandom two-liquid model, and the parameters were fitted. The separation capabilities of the ILs were evaluated in terms of the benzene distribution coefficient and solvent selectivity. The effect of the IL structure on the separation was explained based on a well-founded physical model, COSMO-RS. Finally, the extraction processes were defined, and the operation parameters were analyzed. It shows that the ILs studied are suitable solvents for the extractive separation of benzene and cyclohexane, and their separation efficiency can be generally ranked as [Bmim][BF 4] > [Bpy][BF 4] > [Bmim][SCN]. The extraction process for a feed with 15 mol % benzene was optimized. High product purity (cyclohexane 0.997) and high recovery efficiency (cyclohexane 96.9% and benzene 98.1%) can be reached. © 2012 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-order-harmonic generation in benzene is studied using a mixed quantum-classical approach in which the electrons are described using time-dependent density functional theory while the ions move classically. The interaction with both linearly and circularly polarised infra-red ($\lambda = 800$ nm) laser pulses of duration 10 cycles (26.7 fs) is considered. The effect of allowing the ions to move is investigated as is the effect of including self-interaction corrections to the exchange-correlation functional. Our results for circularly polarised pulses are compared with previous calculations in which the ions were kept fixed and self-interaction corrections were not included while our results for linearly polarised pulses are compared with both previous calculations and experiment. We find that even for the short duration pulses considered here, the ionic motion greatly influences the harmonic spectra. While ionization and ionic displacements are greatest when linearly polarised pulses are used, the response to circularly polarised pulses is almost comparable, in agreement with previous experimental results.