705 resultados para (hyper)polarizability
Resumo:
The presence of an RNA virus in a South American subgenus of the Leishmania parasite, L. (Viannia), was detected several decades ago but its role in leishmanial virulence and metastasis was only recently described. In Leishmania guyanensis, the nucleic acid of Leishmania RNA virus (LRV1) acts as a potent innate immunogen, eliciting a hyper-inflammatory immune response through toll-like receptor 3 (TLR3). The resultant inflammatory cascade has been shown to increase disease severity, parasite persistence, and perhaps even resistance to anti-leishmanial drugs. Curiously, LRVs were found mostly in clinical isolates prone to infectious metastasis in both their human source and experimental animal model, suggesting an association between the viral hyperpathogen and metastatic complications such as mucocutaneous leishmaniasis (MCL). MCL presents as chronic secondary lesions in the mucosa of the mouth and nose, debilitatingly inflamed and notoriously refractory to treatment. Immunologically, this outcome has many of the same hallmarks associated with the reaction to LRV: production of type 1 interferons, bias toward a chronic Th1 inflammatory state and an impaired ability of host cells to eliminate parasites through oxidative stress. More intriguing, is that the risk of developing MCL is found almost exclusively in infections of the L. (Viannia) subtype, further indication that leishmanial metastasis is caused, at least in part, by a parasitic component. LRV present in this subgenus may contribute to the destructive inflammation of metastatic disease either by acting in concert with other intrinsic "metastatic factors" or by independently preying on host TLR3 hypersensitivity. Because LRV amplifies parasite virulence, its presence may provide a unique target for diagnostic and clinical intervention of metastatic leishmaniasis. Taking examples from other members of the Totiviridae virus family, this paper reviews the benefits and costs of endosymbiosis, specifically for the maintenance of LRV infection in Leishmania parasites, which is often at the expense of its human host.
Resumo:
Purpose: To investigate the differences between Fundus Camera (Topcon TRC-50X) and Confocal Scanning Laser Ophthalmoscope (Heidelberg retina angiogram (HRA)) on the fundus autofluorescence (FAF) imaging (resolution and FAF characteristics). Methods: 105 eyes of 56 patients with various retinal diseases underwent FAF imaging with HRA (488nm exciter/500nm barrier filter) before fluorescein angiography (FFA) and Topcon Fundus Camera (580nm exciter/695nm barrier filter) before and after FFA. The quality of the FAF images was compared for their resolution and analysed for the influence of fixation stability and cataracts. Hypo-and hyper-FAF behaviour was analysed for the healthy disc, healthy fovea, and a variety of pathological features. Results: HRA images were found to be of superior resolution in 18, while Topcon images were estimated superior in 29 eyes. No difference was found in 58 eyes. Both poor fixation (p=0.009) and more advanced cataract (p=0.013) were found associated with better image quality by Topcon. Images acquired by Topcon before and after FFA were identical (100%). The healthy disc was usually dark on HRA (72%), but showed mild autofluorescence on Topcon (85%). The healthy fovea showed in 100% Hypo-FAF on HRA, while Topcon showed in 53% Iso-FAF, in 43% mild Hypo-FAF, and in 4% Hypo-FAF as on HRA. No difference of FAF was found for geographic atrophy, pigment changes, and drusen, although Topcon images were often more detailed. Hyper-FAF due to serous exudation showed better on HRA. Cystic edema was visible only on HRA in a petaloid hyper-FAF pattern in 83%, while only two eyes (17%) showed similar behavior in both HRA- and Topcon images. Hard exudates caused Hypo-FAF only on HRA, hardly visible on Topcon. Blockage phenomenon by blood however was identical. Conclusions: The filter set of Topcon and the single image acquisition appear to be an advantage for patients with cataract and poor fixation respectively. Preceding FFA does not alter the Topcon FAF image. Regarding the FAF behavior, there are differences between the 2 systems which need to be taken into account when interpreting the images.
Resumo:
Background and objective: Optimal care of diabetic patients (DPs) decreases the risk of complications. Close blood glucose monitoring can improve patient outcomes and shorten hospital stay. The objective of this pilot study was to evaluate the treatment of hospitalized DPs according to the current standards, including their diabetic treatment and drugs to prevent diabetes related complications [=guardian drugs: angiotensin converting enzyme inhibitors (ACEI) or Angiotensin II Receptor Blockers (ARB), antiplatelet drugs, statins]. Guidelines of the American Diabetes Association (ADA) [1] were used as reference as they were the most recent and exhaustive for hospital care. Design: Observational pilot study: analysis of the medical records of all DPs seen by the clinical pharmacists during medical rounds in different hospital units. An assessment was made by assigning points for fulfilling the different criteria according to ADA and then by dividing the total by the maximum achievable points (scale 0-1; 1 = all criteria fulfilled). Setting: Different Internal Medicine and Geriatric Units of the (multi-site) Ho^pital du Valais. Main outcome measures: - Completeness of diabetes-related information: type of diabetes, medical history, weight, albuminuria status, renal function, blood pressure, (recent) lipid profile. - Management of blood glucose: Hb1Ac, glycemic control, plan for treating hyper-/hypoglycaemia. - Presence of guardian drugs if indicated. Results: Medical records of 42 patients in 10 different units were analysed (18 women, 24 men, mean age 75.4 ± 11 years). 41 had type 2 diabetes. - Completeness of diabetes-related information: 0.8 ± 0.1. Information often missing: insulin-dependence (43%) and lipid profile (86%). - Management of blood glucose: 0.5 ± 0.2. 15 patients had suboptimal glycemic balance (target glycaemia 7.2-11.2 mmol/ l, with values[11.2 or\3.8 mmol/l, or Hb1Ac[7%), 10 patients had a deregulated balance (more than 10 values[11.2 mmol/l or \3.8 mmol/l and even values[15 mmol/l). - Presence of guardian drugs if indicated: ACEI/ARB: 19 of 23 patients (82.6%), statin: 16 of 40 patients (40%), antiplatelet drug: 16 of 39 patients (41%). Conclusions: Blood glucose control was insufficient in many DPs and prescription of statins and antiplatelet drugs was often missing. If confirmed by a larger study, these two points need to be optimised. As it is not always possible and appropriate to make those changes during hospital stay, a further project should assess and optimise diabetes care across both inpatient and outpatient settings.
Resumo:
The nuclear factor of activated T cells (NFAT) family of transcription factors controls calcium signaling in T lymphocytes. In this study, we have identified a crucial regulatory role of the transcription factor NFATc2 in T cell-dependent experimental colitis. Similar to ulcerative colitis in humans, the expression of NFATc2 was up-regulated in oxazolone-induced chronic intestinal inflammation. Furthermore, NFATc2 deficiency suppressed colitis induced by oxazolone administration. This finding was associated with enhanced T cell apoptosis in the lamina propria and strikingly reduced production of IL-6, -13, and -17 by mucosal T lymphocytes. Further studies using knockout mice showed that IL-6, rather than IL-23 and -17, are essential for oxazolone colitis induction. Administration of hyper-IL-6 blocked the protective effects of NFATc2 deficiency in experimental colitis, suggesting that IL-6 signal transduction plays a major pathogenic role in vivo. Finally, adoptive transfer of IL-6 and wild-type T cells demonstrated that oxazolone colitis is critically dependent on IL-6 production by T cells. Collectively, these results define a unique regulatory role for NFATc2 in colitis by controlling mucosal T cell activation in an IL-6-dependent manner. NFATc2 in T cells thus emerges as a potentially new therapeutic target for inflammatory bowel diseases.
Resumo:
DnaA is a conserved essential bacterial protein that acts as the initiator of chromosomal replication as well as a master transcriptional regulator in Caulobacter crescentus. Thus, the intracellular levels of active DnaA need to be tightly regulated during the cell cycle. Our previous work suggested that DnaA may be regulated at the level of its activity by the replisome-associated protein HdaA. Here, we describe the construction of a mutant DnaA protein [DnaA(R357A)]. The R357 residue in the AAA+ domain of the C. crescentus DnaA protein is equivalent to the R334 residue of the E. coli DnaA protein, which is required for the Regulatory Inactivation of DnaA (RIDA). We found that the expression of the DnaA(R357A) mutant protein in C. crescentus, but not the expression of the wild-type DnaA protein at similar levels, causes a severe phenotype of over-initiation of chromosomal replication and that it blocks cell division. Thus, the mutant DnaA(R357A) protein is hyper-active to promote the initiation of DNA replication, compared to the wild-type DnaA protein. DnaA(R357A) could not replace DnaA in vivo, indicating that the switch in DnaA activity once chromosomal replication has started may be an essential process in C. crescentus. We propose that the inactivation of DnaA is the main mechanism ensuring that chromosomal replication starts only once per cell cycle. We further observed that the R357A substitution in DnaA does not promote the activity of DnaA as a direct transcriptional activator of four important genes, encoding HdaA, the GcrA master cell cycle regulator, the FtsZ cell division protein and the MipZ spatial regulator of cell division. Thus, the AAA+ domain of DnaA may play a role in temporally regulating the bifunctionality of DnaA by reallocating DnaA molecules from initiating DNA replication to transcribing genes within the unique DnaA regulon of C. crescentus.
Resumo:
Expression based prediction of gene alterations identified WNT inhibitory factor I (WIF1) as a new candidate tumor suppressor gene involved in glioblastoma. WIF1 encodes a secreted WNT antagonist and it is strongly down-regulated in most glioblastoma as compared to normal brain both by genomic deletion and WIF1 promoter hypermethylation. WIF1 expression in glioblastoma cell lines inhibited cell proliferation in vitro and in vivo and strongly reduced migration capability. Interestingly, WIF1 expression induced a senescence-like phenotype characterized by the appearance of enlarged, flattened and multinucleated cells positive for the presence of senescence associated ß-galactosidase, a late marker of senescence. It is of note that WIF1 induced senescence, in glioma cell lines, is independent of either p53 or pRB, two pathways that have been widely associated with this process. The analysis of the signaling pathways downstream of WIF1 brought some interesting results. WIF1 expression inhibited the canonical pathway but alteration of this pathway alone couldn't explain all the WIFl-induced effects. Some WIF1-related changes were attributed to inhibition of the non-canonical pathway, as we could prove by downregulation of WNT5a, the main ligand of the non-canonical WNT pathway. For example, a drastic reduction of phosphorylation of both ERK and p38 was detected when either overexpressing WIF1 or downregulating WNT5a. Due to the complexity of the non-canonical pathway is difficult to define the precise mechanism of signal transduction. We have excluded the involvement of the WNT5a-JNK-APl pathway and preliminary results suggest the implication of the WNT-calcium signaling, but further evidence is needed. Moreover, from the analysis of the gene expression profile of WIF1 expressing cells we could select a very interesting candidate: MALATI, a non-coding RNA widely associated with migratory capability in many different types of tumors. We found MALATI to be overexpressed in glioblastoma specimens compared to normal brain and to be associated with total tumor volume. The downregulation of MALATI by RNAi (RNA interference] drastically impairs migration, thus it is a very interesting potential target in the context of invasive tumors such as glioblastoma. Résumé WIFl a été sélectionné en tant que putatif suppresseur de tumeurs dans le cadre des glioblastomes par une analyse qui a était conduit à partir des données d'expression de gènes provenant d'environ 80 glioblastomes. WIF1 code pour une protéine destinée à la sécrétion qui antagonise la voie de WNT et son expression est fortement sous-exprimé dans la plupart des glioblastome par rapport à tissu cérébral normal. Cette sous-expression est due à deux mécanismes différents: à la délétion de la partie génomique codant pour WIF1 et à l'hyper méthylation de son promoteur. La surexpression de WIF1 réduit la capacité de prolifération des cellules de glioblastome in vitro ainsi que in vivo et elle réduit aussi leur capacité migratoire. Il est intéressant de remarquer que l'espression de WIF1 induit un phénotype sénescent caractérisé par l'apparition de cellules aplaties, multi nucléées et positives pour l'activité de l'enzyme ß-galactosidase associée à la sénescence, un marqueur tardif de la sénescence. Il est à noter que le phénotype sénescent qui est induit par WIF1 est indépendant de p53 et pRB, deux voies qui ont été largement associées à ce processus. L'analyse des les voies de signalisation en aval de WIFl a apporté des résultats intéressants. L'expression de WIF1 inhibe la voie canonique de WNT, mais l'altération de cette voie seule ne pouvait pas expliquer tous les effets induits par WIF1. Nous avons pu prouver que certains changements sont liés à l'inhibition de la voie non-canonique qui est activée par WNT5cc. Par exemple, une réduction drastique de la phosphorylation de ERK et p38 à la fois a été détectée lorsque WIFl a été surexprimé ou WNT5a sous- exprimé. En raison de la complexité de la voie non-canonique, il est difficile de définir le mécanisme précis de la transduction du signal. Nous avons exclu l'implication de la voie JNK-WNT5a-APl et les résultats préliminaires suggèrent l'implication de la voie de signalisation appelée WNT-calcium. En plus, l'analyse du profil d'expression génique de cellules sur-exprimant WIF1 nous a permis d'identifier un candidat très intéressant: MALATI, un ARN non- codants largement associés à la capacité migratoire dans nombreux types de tumeurs. Nous avons trouvé que MALATI est surexprimé dans les échantillons de glioblastome par rapport à tissu cérébral normal et il est associé au volume total de la tumeur. La sous-expression de MALATI altère considérablement la migration des cellules tumorales. Donc, MALATI, est une cible potentielle très intéressante dans le cadre d'une tumeur invasive telle que le glioblastome.
Resumo:
OBJECTIVES: Women with a history of preeclampsia (PE) are at increased risk of long term cardiovascular and end-stage renal diseases. However, follow up of preeclamptic women is often omitted, mainly due to a weakness of knowledge of maternal caregivers and lack of comprehensive guidelines. The aim of this study was to define the prevalence of albuminuria, high blood pressure, and renal dysfunction 6 weeks after a preeclampsia. METHODS: This is a prospective case-control study comparing women presenting with preeclampsia to an unmatched control group of women with no hypertensive disorders of pregnancy. A complete medical assessment was performed at 6 weeks post-partum. Recruitment started in June 2010. RESULTS: 324 women were included in the PE group and 50 in the control one. Characteristics of both groups and results of the medical work-up at 6 weeks post-partum are presented in Table 1. Women with preeclampsia presented with a higher BMI, higher prevalence of office high blood pressure, pathological albuminuria and renal hyper-filtration than women in the control group. CONCLUSIONS: Prevalence of post-partum hypertension, and renal dysfunction is higher in women with PE than in uncomplicated pregnancies. Systematic assessment of renal risk factors 6 weeks after preeclampsia allows identification of high-risk women and early implementation of preventive and therapeutic strategies. DISCLOSURES: A. Ditisheim: None. B. Ponte: None. G. Wuerzner: None. M. Burnier: None. M. Boulvain: None. A. Pechère-Bertschi: None.
Resumo:
NFAT transcription factors control T-cell activation and function. Specifically, the transcription factor NFATc2 affects the regulation of cell differentiation and growth and plays a critical role in the development of colonic inflammation. Here, we used an experimental model of colitis-associated colorectal carcinoma to investigate the contribution of NFATc2 to the promotion of colonic tumors. Compared with wild-type animals that readily presented with multiple colon tumors, NFATc2-deficient mice were protected from tumor development. This observed decrease in colonic tumor progression was associated with reduced endoscopic inflammation, increased apoptosis of lamina propria T lymphocytes, and significantly reduced levels of the critical proinflammatory cytokines interleukin (IL)-21 and IL-6. Administration of hyper IL-6 abrogated protection from tumor progression in NFATc2-knockout mice and restored tumor incidence to control levels. Taken together, our findings highlight a pivotal role for NFATc2 in the establishment of inflammation-associated colorectal tumors mediated by control of IL-6 expression. Cancer Res; 72(17); 4340-50. ©2012 AACR.
Resumo:
Using an extended-random-phase-approximation sum-rule technique, we have investigated the bulk-plasmon dispersion relation, incorporating in a simple way exchange and correlation effects within the jellium model. The results obtained are compared with recent experimental findings. The key role played by exchange and correlation effects in improving the agreement between theory and experiment is stressed. The static polarizability has also been calculated as a function of q. The formulas can be easily modified to incorporate band-structure effects (through an intraband electron effective mass) and core-polarization effects (through a static dielectric constant).
Resumo:
Many organelles exist in an equilibrium of fragmentation into smaller units and fusion into larger structures, which is coordinated with cell division, the increase in cell mass, and envi¬ronmental conditions. In yeast cells, organelle homeostasis can be studied using the yeast vacuole (lysosome) as a model system. Yeast vacuoles are the main compartment for degrada¬tion of cellular proteins and storage of nutrients, ions and metabolites. Fission and fusion of vacuoles can be induced by hyper- and hypotonic shock in vivo, respectively, and have also been reconstituted in vitro using isolated vacuoles. The conserved serine/threonine kinase TOR (target of rapamycin) is a central nutrient sensor and regulates cell growth and metabolism. In yeast, there are two TOR proteins, Torlp and Tor2p, which are part of larger protein complexes, TORCI and TORC2. Only TORCI is rapamycin-sensitive. Disregulation of TOR signaling is linked to a multitude of diseases in humans, e.g. cancer, neurodegenerative diseases and metabolic syndrome. It has been shown that TORCI localizes to the vacuole membrane, and recent findings of our laboratory demonstrated that TORCI positively regulates vacuole fragmentation. This suggests that the fragmentation machinery should contain target proteins phosphorylated by TORCI. I explored the rapamycin-and fission-dependent vacuolar phosphoproteome during frag¬mentation, using a label-free mass-spectrometry approach. I identified many vacuolar factors whose phosphorylation was downregulated in a TORCI- and fission-dependent manner. Among them were known protein complexes that are functionally linked to fission or fusion, like the HOPS, VTC and FAB1 complexes. Hence, TORCI-dependent phosphorylations might positively regulate vacuole fission. Several candidates were chosen for detailed microscopic analysis of in vivo vacuole frag-mentation, using deletion mutants. I was able to identify novel factors not previously linked to fission phenotypes, e.g. the SEA complex, Pib2, and several vacuolar amino acid transporters. Transport of neutral and basic amino acids across the membrane seems to control vacuole fission, possibly via TORCI. I analyzed vacuolar fluxes of amino acids in wildtype yeast cells and found evidence for a selective vacuolar export of basic amino acids upon hyperosmotic stress. This leads me to propose a model where vacuolar export of amino acids is necessary to reshape the organelle under salt stress. - Le nombre et la taille de certaines organelles peut être déterminé par un équilibre entre la fragmentation qui produit des unités plus petites et la fusion qui génère des structures plus larges. Cet équilibre est coordonné avec la division cellulaire, l'augmentation de la masse cellulaire, et les conditions environnementales. Dans des cellules de levure, l'homéostasie des organelles peut être étudié à l'aide d'un système modèle, la vacuole de levure (lysosome). Les vacuoles constituent le principal compartiment de la dégradation des protéines et de stockage des nutriments, des ions et des métabolites. La fragmentation et la fusion des vacuoles peuvent être respectivement induites par un traitement hyper- ou hypo-tonique dans les cellules vivantes. Ces processus ont également été reconstitués in vitro en utilisant des vacuoles isolées. La sérine/thréonine kinase conservée TOR (target of rapamycin/cible de la rapamycine) est un senseur de nutriments majeur qui régule la croissance cellulaire et le métabolisme. Chez la levure, il existe deux protéines TOR, Torlp et Tor2p, qui sont les constituants de plus grands complexes de protéines, TORCI et TORC2. TORCI est spécifiquement inhibé par la rapamycine. Une dysrégulation de la signalisation de TOR est liée à une multitude de maladies chez l'homme comme le cancer, les maladies neurodégénératives et le syndrome métabolique. Il a été montré que TORCI se localise à la membrane vacuolaire et les découvertes récentes de notre laboratoire ont montré que TORCI régule positivement la fragmentation de la vacuole. Ceci suggère que le mécanisme de fragmentation doit être contrôlé par la phosphorylation de certaines protéines cibles de TORCI. J'ai exploré le phosphoprotéome vacuolaire lors de la fragmentation, en présence ou absence de rapamycine et dans des conditions provoquant la fragmentation des organelles. La méthode choisie pour réaliser la première partie de ce projet a été la spectrométrie de masse différentielle sans marquage. J'ai ainsi identifié plusieurs facteurs vacuolaires dont la phosphorylation est régulée d'une manière dépendante de TORCI et de la fragmentation. Parmi ces facteurs, des complexes protéiques connus qui sont fonctionnellement liées à fragmentation ou la fusion, comme les complexes HOPS, VTC et FAB1 ont été mis en évidence. Par conséquent, la phosphorylation dépendante de TORCI peut réguler positivement la fragmentation des vacuoles. Plusieurs candidats ont été choisis pour une analyse microscopique détaillée de la fragmentation vacuolaire in vivo en utilisant des mutants de délétion. J'ai été en mesure d'identifier de nouveaux facteurs qui n'avaient pas été encore associés à des phénotypes de fragmentation tels que les complexes SEA, Pib2p, ainsi que plusieurs transporteurs vacuolaires d'acides aminés. Le transport des acides aminés à travers la membrane semble contrôler la fragmentation de la vacuole. Puisque ces transporteurs sont phosphorylés par TORCI, ces résultats semblent confirmer la
Resumo:
Airborne microbial products have been reported to promote immune responses that suppress asthma, yet how these beneficial effects take place remains controversial and poorly understood. We have found that pulmonary exposure with the bacterium Escherichia coli leads to a suppression of allergic airway inflammation, characterized by reduced airway-hyperresponsiveness, eosinophilia and cytokine production by T cells in the lung. This immune modulation was neither mediated by the induction of a Th1 response nor regulatory T cells; was dependent on TLR-4 but did not involve TLR-desensitization. Dendritic cell migration to the draining lymph nodes and subsequent activation of T cells was unaffected by prior exposure to E.coli indicating that the immunomodulation was limited to the lung environment. In non-treated control mice ovalbumin was primarily presented by airway CD11b+ CD11c+ DCs expressing high levels of MHC class II molecules whilst the DCs in E.coli-treated mice displayed a less activated phenotype and had impaired antigen presentation capacity. Consequently, in situ Th2 cytokine production by ovalbuminspecific effector T cells recruited to the airways was significantly reduced. The suppression of airways hyper responsiveness was mediated through the recruitment of IL-17-producing gd-T cells; however, the suppression of dendritic cells and T cells was mediated through a distinct mechanism that could not be overcome by the local administration of activated dendritic cells, or by the in vivo administration of TNF-alpha. Taken together, these data reveal a novel multi-component immunoregulatory pathway that acts to protect the airways from allergic inflammation.
Resumo:
High-density lipoproteins (HDLs) protect pancreatic beta cells against apoptosis. This property might relate to the increased risk to develop diabetes in patients with low HDL blood levels. The mechanisms by which HDLs protect beta cells are poorly characterized however. Here we used a transcriptomic approach to identify genes differentially modulated by HDLs in beta cells subjected to apoptotic stimuli. The transcript encoding 4E-BP1 was up-regulated by serum starvation and HDLs blocked this increase. 4E-BP1 inhibits cap-dependent translation in its non- or hypo-phosphorylated state but it looses this ability when hyper-phosphorylated. At the protein level, 4E-BP1 was also up-regulated in response to starvation and IL1beta and this was blunted by HDLs. While an ectopic increase of 4E-BP1 expression induced beta cell death, silencing 4E-BP1 increase with shRNAs inhibited the apoptotic-inducing capacities of starvation. HDLs can therefore protect beta cells by blocking 4E-BP1 protein expression but this is not the sole protective mechanism activated by HDLs. Indeed, HDLs blocked apoptosis induced by ER stress with no associated decrease in total 4E-BP1 induction. Although, HDLs favored the phosphorylation, and hence the inactivation of 4E-BP1 in these conditions, this appeared not to be required for HDL protection. Our results indicate that HDLs can protect beta cells through modulation of 4E-BP1 depending on the type of stress stimuli.
Resumo:
INTRODUCTION: Myasthenia gravis is an autoimmune disease characterized by fluctuating muscle weakness. It is often associated with other autoimmune disorders, such as thyroid disease, rheumatoid arthritis, systemic lupus erythematosus, and antiphospholipid syndrome. Many aspects of autoimmune diseases are not completely understood, particularly when they occur in association, which suggests a common pathogenetic mechanism. CASE PRESENTATION: We report a case of a 42-year-old Caucasian woman with antiphospholipid syndrome, in whom myasthenia gravis developed years later. She tested negative for both antibodies against the acetylcholine receptor and against muscle-specific receptor tyrosine-kinase, but had typical decremental responses at the repetitive nerve stimulation testing, so that a generalized myasthenia gravis was diagnosed. Her thromboplastin time and activated partial thromboplastin time were high, anticardiolipin and anti-β2 glycoprotein-I antibodies were slightly elevated, as a manifestation of the antiphospholipid syndrome. She had a good clinical response when treated with a combination of pyridostigmine, prednisone and azathioprine. CONCLUSIONS: Many patients with myasthenia gravis test positive for a large variety of auto-antibodies, testifying of an immune dysregulation, and some display mild T-cell lymphopenia associated with hypergammaglobulinemia and B-cell hyper-reactivity. Both of these mechanisms could explain the occurrence of another autoimmune condition, such as antiphospholipid syndrome, but further studies are necessary to shed light on this matter.Clinicians should be aware that patients with an autoimmune diagnosis such as antiphospholipid syndrome who develop signs and neurological symptoms suggestive of myasthenia gravis are at risk and should prompt an emergent evaluation by a specialist.
Resumo:
MOTIVATION: Analysis of millions of pyro-sequences is currently playing a crucial role in the advance of environmental microbiology. Taxonomy-independent, i.e. unsupervised, clustering of these sequences is essential for the definition of Operational Taxonomic Units. For this application, reproducibility and robustness should be the most sought after qualities, but have thus far largely been overlooked. RESULTS: More than 1 million hyper-variable internal transcribed spacer 1 (ITS1) sequences of fungal origin have been analyzed. The ITS1 sequences were first properly extracted from 454 reads using generalized profiles. Then, otupipe, cd-hit-454, ESPRIT-Tree and DBC454, a new algorithm presented here, were used to analyze the sequences. A numerical assay was developed to measure the reproducibility and robustness of these algorithms. DBC454 was the most robust, closely followed by ESPRIT-Tree. DBC454 features density-based hierarchical clustering, which complements the other methods by providing insights into the structure of the data. AVAILABILITY: An executable is freely available for non-commercial users at ftp://ftp.vital-it.ch/tools/dbc454. It is designed to run under MPI on a cluster of 64-bit Linux machines running Red Hat 4.x, or on a multi-core OSX system. CONTACT: dbc454@vital-it.ch or nicolas.guex@isb-sib.ch.
Resumo:
The nuclear factor of activated T cells (NFAT) family of transcription factors controls calcium signaling in T lymphocytes. In this study, we have identified a crucial regulatory role of the transcription factor NFATc2 in T cell-dependent experimental colitis. Similar to ulcerative colitis in humans, the expression of NFATc2 was up-regulated in oxazolone-induced chronic intestinal inflammation. Furthermore, NFATc2 deficiency suppressed colitis induced by oxazolone administration. This finding was associated with enhanced T cell apoptosis in the lamina propria and strikingly reduced production of IL-6, -13, and -17 by mucosal T lymphocytes. Further studies using knockout mice showed that IL-6, rather than IL-23 and -17, are essential for oxazolone colitis induction. Administration of hyper-IL-6 blocked the protective effects of NFATc2 deficiency in experimental colitis, suggesting that IL-6 signal transduction plays a major pathogenic role in vivo. Finally, adoptive transfer of IL-6 and wild-type T cells demonstrated that oxazolone colitis is critically dependent on IL-6 production by T cells. Collectively, these results define a unique regulatory role for NFATc2 in colitis by controlling mucosal T cell activation in an IL-6-dependent manner. NFATc2 in T cells thus emerges as a potentially new therapeutic target for inflammatory bowel diseases.