898 resultados para (-0.02)-0.08 phi
Resumo:
ErSi1.7 layers with high crystalline quality (chi(min) of Er is 1.5%) have been formed by 90 keV Er ion implantation to a dose of 1.6X10(17)/cm(2) at 450 degrees C using channeled implantation. The perpendicular and parallel elastic strain e(perpendicular to)=-0.94%+/-0.02% and e(parallel to)=1.24%+/-0.08% of the heteroepitaxial erbium silicide layers have been measured with symmetric and asymmetric x-ray reflections using a double-crystal x-ray diffractometer. The deduced tetragonal distortion e(T(XRD))=e(parallel to)-e(perpendicular to)=2.18%+/-0.10%, which is consistent with the value e(T(RBS))2.14+/-0.17% deduced from the Rutherford backscattering and channeling measurements. The quasipseudomorphic growth of the epilayer and the stiffness along a and c axes of the epilayer deduced from the x-ray diffraction are discussed.
Resumo:
The structural properties of Semi-insulating gallium arsenide (SI-GaAs) crystal grown with power-travelling technique in space have been studied by double-crystal x-ray diffractometry and chemical etching. The quality of the crystal was first evaluated by x-ray rocking-curve method. The full width at half maximum of x-ray rocking curve in space-grown SI-GaAs is 9.4+/-0.08 are seconds. The average density of dislocations revealed by molten KOH is 2.0 X 10(4) cm(-2), and the highest density is 3.1 X 10(4) cm(-2). The stoichiometry in the single crystal grown in space is improved as well. Unfortunately, the rear of the ingot grown in space is polycrystalline owing to being out of control of power. (C) 1999 COSPAR. Published by Elsevier Science Ltd.
Resumo:
采用两步加热高温固相法合成了掺杂Nd3+的LiFe1-xNdxPO4/C复合材料(x=0,0.01,0.02,0.04,0.06,0.08)。用TG-DSC对前驱体进行分析和SQUID(超导量子干涉仪)对样品中Fe3+的磁性测定,优化了合成工艺条件;采用XRD、FE-SEM、EDS等方法分析了样品的结构并对其电化学性能进行了测试。结果表明:LiFe1-xNdxPO4/C复合材料具有橄榄石型结构;当Nd3+的掺杂量6%(物质的量分数)、煅烧温度700℃、煅烧时间16 h时,样品在0.2C(1C=170.0 mA.g-1)电流密度下的最大放电比容量可达165.2 mAh.g-1,循环100次后的容量保持率仍为92.8%,在1C、2C、5C下的最大放电比容量分别为146.8、125.7和114.8 mAh.g-1。通过测定样品在不同较低倍率下的放电比容量,采用外推法得出制备样品的实测理论比容量为168.7 mAh.g-1。
Resumo:
在基础饲料中分别添加0.04%低聚木糖、0.13%酵母细胞壁、0.08%胆汁酸和同量组合添加,形成5个处理组。采用随机区组试验设计,将体重151.3±15.2 g 的健康大菱鲆鱼165尾平均分配到5个处理组(A~E)中(每组3重复),经72天试验,进行了生长、水质、消化、免疫等试验和测定,结果如下: 组合组的生长效果和饲料利用率最好,酵母细胞壁或低聚木糖单独添加,表现出优良的促生长和饲料利用率;单独添加胆汁酸也有良好效果。4试验组(组合组、酵母细胞壁组、低聚木糖组、胆汁酸组)与对照组比较,增重率分别提高15.4%、13.9%、12.4%(p<0.05)和7.4%(P>0.05),饲料系数分别降低6.9%、6.2%、5.4%(p<0.05)和3.8%(P>0.05)。 不同添加剂及组合对试验鱼所处水环境因子变化仅有小幅影响,统计差异不显著(p>0.05)。4试验组比对照组的水体氨氮含量分别提高4.0%、3.2%、3.0%和0.8%(P>0.05),COD含量分别提高2.8%、-2.2%、-3.4%和0.8%(P>0.05)。根据试验结果,建议水环境因子(氨氮、磷酸盐、COD等)作为水产动物营养与饲料研究的主要衡量指标之一。 3种添加剂组合后达到提高生长大菱鲆非特异性免疫功能的最优效果,对补体C3和C4、细胞吞噬活力和SOD的提高作用尤为显著;酵母细胞壁单独添加对补体C3和细胞吞噬活力的作用更加显著;低聚木糖单独添加对补体C4和细胞吞噬活力的作用显著;单独添加胆汁酸提高免疫力的作用相对较弱。 4试验组比对照组的蛋白质消化酶活力在胃和前肠,分别提高20%和24%、17%和19%、16%和15%(p<0.05)、11%和3%(P>0.05);脂肪消化酶活力在前肠和中肠,分别提高22%和19%、19%和17%(p<0.05)、7%和12%(p>0.05)、19%和18%(p<0.05)。 4试验组比对照组的蛋白质消化率分别提高了3.6%、2.9%、3.7%(p<0.05)和1.5%(p>0.05);粪蛋白质排出量减少12.7%、7.1%、13.4%和2.4%(p>0.05)。说明,3种添加剂显著提高了生长大菱鲆蛋白质消化率,使粪蛋白质排出量不同程度降低,显示了试验使用添加剂的无公害效应。 权衡不同添加剂及其组合对大菱鲆生长期生长性能、饲料利用率、水生态因子、消化酶活力、非特异性免疫、蛋白质消化与粪蛋白质排出的综合影响,本研究从生态与环保角度得出:3种添加剂组合的效果最好,酵母细胞壁或低聚木糖单独添加表现出优良效果;单独添加胆汁酸也有良好作用。
Resumo:
湖泊生态系统是陆地水体生态系统的重要组成部分。随着社会经济的不断发展,各种人为因素对湖泊生态系统的影响日益突出,打破了其自然演变规律,诸如 “二次污染”、水体富营养化、重金属污染等环境问题接踵而来。而铁是水生生态系统初级生产力所必需的重要微量营养元素之一,在一定的条件下可以控制和影响浮游藻类的生长速度和种类;而且,铁的氧化还原敏感性很强,其价态的改变往往会影响其它相关重金属的迁移和转化。因此,湖泊生态系统中铁的生物地球化学循环研究具有非常重要的意义。近年来的研究显示,铁同位素分析技术可以用于各种生物作用和非生物作用过程的研究,在海洋和河流生态系统中已有广泛的应用,而对湖泊生态系统的研究则鲜见报导。乌江流域中等富营养化的湖泊――红枫湖和贵阳西南郊矿化程度较高的湖泊――阿哈湖是研究湖泊生态系统中铁生物地球化学循环的理想场所。本文选取这两个性质不同的湖泊为研究对象,运用硫同位素、铁同位素及重金属和营养盐等地球化学方法手段,对两湖流域内硫酸盐的来源、硫同位素的季节和剖面变化特征、铁的来源及铁同位素组成的季节和剖面变化特征及其控制和影响因素等进行了研究和探讨,进一步完善了铁同位素分馏机理,为深化理解和研究湖泊生态系统中铁和硫的生物地球化学循环提供一定的科学依据。论文所获的主要认识总结如下: 两湖流域内湖水与河水的硫酸盐硫同位素地球化学 (1)阿哈湖流域和红枫湖流域水体的硫酸盐浓度和δ34S值均有较宽的分布范围。各入湖支流中,受煤矿废水或煤矸石淋溶液污染的河水的δ34S值相对较低(-8.10‰~-14.92‰),而受生活污水影响严重的河水则具有相对较高的δ34S值(-5.68‰~+0.88‰)。相比而言,阿哈湖流域水体纳入了大量的煤矿废水和煤矸石淋溶液,硫污染程度较红枫湖流域更为严重。因此,阿哈湖湖水具有相对较高的硫酸根浓度(平均为2.30 mmol.L-1)和相对较低的δ34S值(平均为-8.10‰),而红枫湖则具有相对较低的硫酸根浓度(平均为0.96 mmol.L-1)和相对较高的δ34S值(平均为-6.80‰)。 (2)阿哈湖湖水中的硫酸盐主要受煤矿废水、煤矸石淋溶液以及雨水等的控制;红枫湖湖水的硫酸盐主要来源于煤中黄铁矿的氧化和雨水输入,土壤硫化物的氧化和蒸发岩的溶解对湖水硫酸盐硫同位素组成的贡献较小。相比之下,雨水对红枫湖湖水硫同位素的影响更为明显。 (3)红枫湖和阿哈湖湖水的硫酸盐的δ34S值均具有明显的剖面变化特征,而且两湖的变化趋势相似,总体表现为,夏秋季节表层湖水和底层湖水的δ34S值相对较高,而冬春季节湖水剖面上下几乎没有变化。湖水硫酸盐浓度也呈现类似的变化特征,这主要与季节性厌氧湖泊夏季分层冬季混和的典型特点有关。夏季湖水分层期间,大量降雨在湖泊表层的滞留使得δ34S值升高而硫酸盐浓度降低,湖泊底部水层中硫酸盐细菌的还原作用使得底层湖水的硫酸盐浓度降低,而δ34S值升高。 两湖流域内铁同位素地球化学 (1)阿哈湖流域各类样品的δ56Fe值分布在-2.03‰~+0.12‰之间,分布范围较宽。其中湖水悬浮颗粒物的δ56Fe值在-1.36‰~-0.03‰之间,整体相对偏负。湖周各支流河水悬浮颗粒物的δ56Fe值在-0.88‰~+0.07‰之间,也相对富集轻的铁同位素;湖底沉积物和孔隙水的δ56Fe值的分布范围分别为-1.75‰~-0.59‰和-2.03‰~+0.12‰;大气颗粒物和浮游藻类的δ56Fe值分别为+0.06±0.02‰和+0.08‰。与阿哈湖相比,红枫湖流域各类样品的δ56Fe值的分布范围相对较窄,在-0.92‰~+0.36‰之间。湖水悬浮颗粒物的δ56Fe值在-0.85‰~+0.14‰之间,河水悬浮颗粒物的铁同位素组成变化范围为-0.89‰~+0.10‰,二者的变化范围相似。红枫湖沉积物的δ56Fe值在-0.18‰~+0.08‰之间,明显比阿哈湖沉积物的铁同位素组成偏正;而对应孔隙水的铁同位素组成的变化范围为-0.59‰~-0.24‰,均要比对应沉积物的铁同位素值要低。藻类和鲫鱼鱼肉的δ56Fe值分别为+0.36‰和-0.92‰。 (2)通过对两湖研究区湖水悬浮颗粒物与各输入端员环境样品的铁同位素值的研究表明,湖水悬浮颗粒物的δ56Fe值不仅受各输入端员的控制和影响,湖泊内部相关的生物地球化学过程也对湖水悬浮颗粒物的铁同位素组成变化产生了重要影响。两湖研究区内湖水悬浮颗粒物的铁同位素组成均存在季节变化特征,但受湖泊自身特点的影响,主要控制因素方面存在一定差异。夏季阿哈湖湖水悬浮颗粒物的铁同位素值变幅较大,其变化主要表现在表层和底层。表层因受陆源输入的有机结合态铁的影响而具有较负的δ56Fe值,而大气沉降颗粒物和湖泊表层的浮游藻类的影响并不显著。夏季湖水分层期间,“Ferrous Wheel”铁循环对于界面附近铁同位素的重分配起到了主要的控制和影响作用,湖水悬浮颗粒物的铁同位素值在氧化-还原界面附近达到了极负值。水-沉积物界面附近滞水层中亚铁类硫化物的生成可能也是水-沉积物界面附近水层内颗粒物的δ56Fe值偏负的原因之一。而冬季湖水混和时期,阿哈湖湖水剖面悬浮颗粒物的δ56Fe值的变幅明显减小。与阿哈湖不同,藻类的吸附作用可能在夏季红枫湖上层水体中占有主导地位,其湖水悬浮颗粒物的铁同位素组成随叶绿素水平的降低而逐渐降低。下层湖水悬浮颗粒物的铁同位素组成变化也受“Ferrous Wheel”铁循环的影响,在红枫湖后五剖面 20m 处达到-0.18‰,大坝剖面底层约为-0.46‰,其变幅没有阿哈湖悬浮颗粒物的δ56Fe值大,可能是受到了湖水中大量有机物质的影响。冬季红枫湖后五剖面的变化趋势与夏季相似,上层和下层水体悬浮颗粒物分别受不同影响因素的控制。上层水体悬浮颗粒物的铁同位素变化不明显,与Fe、Al、Mn、Zn、Co等元素的含量呈现良好的正相关关系;而底层水体悬浮颗粒物的δ56Fe值变幅比夏季要大,HW采样点20m处可达-0.85‰,与Fe、Al、Zn、Co等呈现良好的负相关关系,具体影响因素还有待于进一步研究。
Resumo:
BackgroundMechanical ventilation is important in caring for patients with critical illness. Clinical complications, increased mortality, and high costs of health care are associated with prolonged ventilatory support or premature discontinuation of mechanical ventilation. Weaning refers to the process of gradually or abruptly withdrawing mechanical ventilation. the weaning process begins after partial or complete resolution of the underlying pathophysiology precipitating respiratory failure and ends with weaning success (successful extubation in intubated patients or permanent withdrawal of ventilatory support in tracheostomized patients).ObjectivesTo evaluate the effectiveness and safety of two strategies, a T-tube and pressure support ventilation, for weaning adult patients with respiratory failure that required invasive mechanical ventilation for at least 24 hours, measuring weaning success and other clinically important outcomes.Search methodsWe searched the following electronic databases: Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2012, Issue 6); MEDLINE (via PubMed) (1966 to June 2012); EMBASE (January 1980 to June 2012); LILACS (1986 to June 2012); CINAHL (1982 to June 2012); SciELO (from 1997 to August 2012); thesis repository of CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior) (http://capesdw.capes.gov.br/capesdw/) (August 2012); and Current Controlled Trials (August 2012).We reran the search in December 2013. We will deal with any studies of interest when we update the review.Selection criteriaWe included randomized controlled trials (RCTs) that compared a T-tube with pressure support (PS) for the conduct of spontaneous breathing trials and as methods of gradual weaning of adult patients with respiratory failure of various aetiologies who received invasive mechanical ventilation for at least 24 hours.Data collection and analysisTwo authors extracted data and assessed the methodological quality of the included studies. Meta-analyses using the random-effects model were conducted for nine outcomes. Relative risk (RR) and mean difference (MD) or standardized mean difference (SMD) were used to estimate the treatment effect, with 95% confidence intervals (CI).Main resultsWe included nine RCTs with 1208 patients; 622 patients were randomized to a PS spontaneous breathing trial (SBT) and 586 to a T-tube SBT. the studies were classified into three categories of weaning: simple, difficult, and prolonged. Four studies placed patients in two categories of weaning. Pressure support ventilation (PSV) and a T-tube were used directly as SBTs in four studies (844 patients, 69.9% of the sample). in 186 patients (15.4%) both interventions were used along with gradual weaning from mechanical ventilation; the PS was gradually decreased, twice a day, until it was minimal and periods with a T-tube were gradually increased to two and eight hours for patients with difficult and prolonged weaning. in two studies (14.7% of patients) the PS was lowered to 2 to 4 cm H2O and 3 to 5 cm H2O based on ventilatory parameters until the minimal PS levels were reached. PS was then compared to the trial with the T-tube (TT).We identified 33 different reported outcomes in the included studies; we took 14 of them into consideration and performed meta-analyses on nine. With regard to the sequence of allocation generation, allocation concealment, selective reporting and attrition bias, no study presented a high risk of bias. We found no clear evidence of a difference between PS and TT for weaning success (RR 1.07, 95% CI 0.97 to 1.17, 9 studies, low quality of evidence), intensive care unit (ICU) mortality (RR 0.81, 95% CI 0.53 to 1.23, 5 studies, low quality of evidence), reintubation (RR 0.92, 95% CI 0.66 to 1.26, 7 studies, low quality evidence), ICU and long-term weaning unit (LWU) length of stay (MD -7.08 days, 95% CI -16.26 to 2.1, 2 studies, low quality of evidence) and pneumonia (RR 0.67, 95% CI 0.08 to 5.85, 2 studies, low quality of evidence). PS was significantly superior to the TT for successful SBTs (RR 1.09, 95% CI 1.02 to 1.17, 4 studies, moderate quality of evidence). Four studies reported on weaning duration, however we were unable to combined the study data because of differences in how the studies presented their data. One study was at high risk of other bias and four studies were at high risk for detection bias. Three studies reported that the weaning duration was shorter with PS, and in one study the duration was shorter in patients with a TT.Authors' conclusionsTo date, we have found evidence of generally low quality from studies comparing pressure support ventilation (PSV) and with a T-tube. the effects on weaning success, ICU mortality, reintubation, ICU and LWU length of stay, and pneumonia were imprecise. However, PSV was more effective than a T-tube for successful spontaneous breathing trials (SBTs) among patients with simple weaning. Based on the findings of single trials, three studies presented a shorter weaning duration in the group undergoing PS SBT, however a fourth study found a shorter weaning duration with a T-tube.
Resumo:
Effective dosages for enzyme replacement therapy (ERT) in Pompe disease are much higher than for other lysosomal storage disorders, which has been attributed to low cation-independent mannose-6-phosphate receptor (CI-MPR) in skeletal muscle. We have previously demonstrated the benefit of increased CI-MPR-mediated uptake of recombinant human acid-α-glucosidase during ERT in mice with Pompe disease following addition of albuterol therapy. Currently we have completed a pilot study of albuterol in patients with late-onset Pompe disease already on ERT for >2 yr, who were not improving further. The 6-min walk test (6MWT) distance increased in all 7 subjects at wk 6 (30±13 m; P=0.002), wk 12 (34±14 m; P=0.004), and wk 24 (42±37 m; P=0.02), in comparison with baseline. Grip strength was improved significantly for both hands at wk 12. Furthermore, individual subjects reported benefits; e.g., a female patient could stand up from sitting on the floor much more easily (time for supine to standing position decreased from 30 to 11 s), and a male patient could readily swing his legs out of his van seat (hip abduction increased from 1 to 2+ on manual muscle testing). Finally, analysis of the quadriceps biopsies suggested increased CI-MPR at wk 12 (P=0.08), compared with baseline. With the exception of 1 patient who succumbed to respiratory complications of Pompe disease in the first week, only mild adverse events have been reported, including tremor, transient difficulty falling asleep, and mild urinary retention (requiring early morning voiding). Therefore, this pilot study revealed initial safety and efficacy in an open label study of adjunctive albuterol therapy in patients with late-onset Pompe disease who had been stable on ERT with no improvements noted over the previous several years.
Resumo:
The outcomes for both (i) radiation therapy and (ii) preclinical small animal radio- biology studies are dependent on the delivery of a known quantity of radiation to a specific and intentional location. Adverse effects can result from these procedures if the dose to the target is too high or low, and can also result from an incorrect spatial distribution in which nearby normal healthy tissue can be undesirably damaged by poor radiation delivery techniques. Thus, in mice and humans alike, the spatial dose distributions from radiation sources should be well characterized in terms of the absolute dose quantity, and with pin-point accuracy. When dealing with the steep spatial dose gradients consequential to either (i) high dose rate (HDR) brachytherapy or (ii) within the small organs and tissue inhomogeneities of mice, obtaining accurate and highly precise dose results can be very challenging, considering commercially available radiation detection tools, such as ion chambers, are often too large for in-vivo use.
In this dissertation two tools are developed and applied for both clinical and preclinical radiation measurement. The first tool is a novel radiation detector for acquiring physical measurements, fabricated from an inorganic nano-crystalline scintillator that has been fixed on an optical fiber terminus. This dosimeter allows for the measurement of point doses to sub-millimeter resolution, and has the ability to be placed in-vivo in humans and small animals. Real-time data is displayed to the user to provide instant quality assurance and dose-rate information. The second tool utilizes an open source Monte Carlo particle transport code, and was applied for small animal dosimetry studies to calculate organ doses and recommend new techniques of dose prescription in mice, as well as to characterize dose to the murine bone marrow compartment with micron-scale resolution.
Hardware design changes were implemented to reduce the overall fiber diameter to <0.9 mm for the nano-crystalline scintillator based fiber optic detector (NanoFOD) system. Lower limits of device sensitivity were found to be approximately 0.05 cGy/s. Herein, this detector was demonstrated to perform quality assurance of clinical 192Ir HDR brachytherapy procedures, providing comparable dose measurements as thermo-luminescent dosimeters and accuracy within 20% of the treatment planning software (TPS) for 27 treatments conducted, with an inter-quartile range ratio to the TPS dose value of (1.02-0.94=0.08). After removing contaminant signals (Cerenkov and diode background), calibration of the detector enabled accurate dose measurements for vaginal applicator brachytherapy procedures. For 192Ir use, energy response changed by a factor of 2.25 over the SDD values of 3 to 9 cm; however a cap made of 0.2 mm thickness silver reduced energy dependence to a factor of 1.25 over the same SDD range, but had the consequence of reducing overall sensitivity by 33%.
For preclinical measurements, dose accuracy of the NanoFOD was within 1.3% of MOSFET measured dose values in a cylindrical mouse phantom at 225 kV for x-ray irradiation at angles of 0, 90, 180, and 270˝. The NanoFOD exhibited small changes in angular sensitivity, with a coefficient of variation (COV) of 3.6% at 120 kV and 1% at 225 kV. When the NanoFOD was placed alongside a MOSFET in the liver of a sacrificed mouse and treatment was delivered at 225 kV with 0.3 mm Cu filter, the dose difference was only 1.09% with use of the 4x4 cm collimator, and -0.03% with no collimation. Additionally, the NanoFOD utilized a scintillator of 11 µm thickness to measure small x-ray fields for microbeam radiation therapy (MRT) applications, and achieved 2.7% dose accuracy of the microbeam peak in comparison to radiochromic film. Modest differences between the full-width at half maximum measured lateral dimension of the MRT system were observed between the NanoFOD (420 µm) and radiochromic film (320 µm), but these differences have been explained mostly as an artifact due to the geometry used and volumetric effects in the scintillator material. Characterization of the energy dependence for the yttrium-oxide based scintillator material was performed in the range of 40-320 kV (2 mm Al filtration), and the maximum device sensitivity was achieved at 100 kV. Tissue maximum ratio data measurements were carried out on a small animal x-ray irradiator system at 320 kV and demonstrated an average difference of 0.9% as compared to a MOSFET dosimeter in the range of 2.5 to 33 cm depth in tissue equivalent plastic blocks. Irradiation of the NanoFOD fiber and scintillator material on a 137Cs gamma irradiator to 1600 Gy did not produce any measurable change in light output, suggesting that the NanoFOD system may be re-used without the need for replacement or recalibration over its lifetime.
For small animal irradiator systems, researchers can deliver a given dose to a target organ by controlling exposure time. Currently, researchers calculate this exposure time by dividing the total dose that they wish to deliver by a single provided dose rate value. This method is independent of the target organ. Studies conducted here used Monte Carlo particle transport codes to justify a new method of dose prescription in mice, that considers organ specific doses. Monte Carlo simulations were performed in the Geant4 Application for Tomographic Emission (GATE) toolkit using a MOBY mouse whole-body phantom. The non-homogeneous phantom was comprised of 256x256x800 voxels of size 0.145x0.145x0.145 mm3. Differences of up to 20-30% in dose to soft-tissue target organs was demonstrated, and methods for alleviating these errors were suggested during whole body radiation of mice by utilizing organ specific and x-ray tube filter specific dose rates for all irradiations.
Monte Carlo analysis was used on 1 µm resolution CT images of a mouse femur and a mouse vertebra to calculate the dose gradients within the bone marrow (BM) compartment of mice based on different radiation beam qualities relevant to x-ray and isotope type irradiators. Results and findings indicated that soft x-ray beams (160 kV at 0.62 mm Cu HVL and 320 kV at 1 mm Cu HVL) lead to substantially higher dose to BM within close proximity to mineral bone (within about 60 µm) as compared to hard x-ray beams (320 kV at 4 mm Cu HVL) and isotope based gamma irradiators (137Cs). The average dose increases to the BM in the vertebra for these four aforementioned radiation beam qualities were found to be 31%, 17%, 8%, and 1%, respectively. Both in-vitro and in-vivo experimental studies confirmed these simulation results, demonstrating that the 320 kV, 1 mm Cu HVL beam caused statistically significant increased killing to the BM cells at 6 Gy dose levels in comparison to both the 320 kV, 4 mm Cu HVL and the 662 keV, 137Cs beams.
Resumo:
We present here vertical fluxes of oxygenated volatile organic compounds (OVOCs) measured with eddy covariance (EC) during the period of March to July 2012 near the southwest coast of the United Kingdom. The performance of the proton-transfer-reaction mass spectrometer (PTR-MS) for flux measurement is characterized, with additional considerations given to the homogeneity and stationarity assumptions required by EC. Observed mixing ratios and fluxes of OVOCs (specifically methanol, acetaldehyde, and acetone) vary significantly with time of day and wind direction. Higher mixing ratios and fluxes of acetaldehyde and acetone are found in the daytime and from the direction of a forested park, most likely due to light-driven emissions from terrestrial plants. Methanol mixing ratio and flux do not demonstrate consistent diel variability, suggesting sources in addition to plants. We estimate air-sea exchange and photochemical rates of these compounds, which are compared to measured vertical fluxes. For acetaldehyde, the mean (1 sigma) mixing ratio of 0.13 (0.02) ppb at night may be maintained by oceanic emission, while photochemical destruction out-paces production during the day. Air-sea exchange and photochemistry are probably net sinks of methanol and acetone in this region. Their nighttime mixing ratios of 0.46 (0.20) and 0.39 (0.08) ppb appear to be affected more by terrestrial emissions and long-distance transport, respectively.
Resumo:
We present here vertical fluxes of methanol, acetaldehyde, and acetone measured directly with eddy covariance (EC) during March to July 2012 near the southwest coast of the UK. The performance of the proton-transfer reaction mass spectrometer (PTR-MS) for flux measurement is characterized, with additional considerations given to the homogeneity and stationarity assumptions required by EC. Concentrations and fluxes of these compounds vary significantly with time of day and wind direction. Higher values of acetaldehyde and acetone are usually observed in the daytime and from the direction of a forested park, most likely due to light-driven emissions from terrestrial plants. Methanol concentration and flux do not demonstrate clear diel variability, suggesting sources in addition to plants. We estimate air–sea exchange and photochemical rates of these compounds, which are compared to measured vertical fluxes. For acetaldehyde, the mean (1�) concentration of 0.13 (0.02) ppb at night may be maintained by oceanic emission, while photochemical destruction outpaces production during the day. Air-sea exchange and photochemistry are probably net sinks of methanol and acetone in this region. Their nighttime concentrations of 0.46 (0.20) and 0.39 (0.08) ppb appear to be affected more by terrestrial emissions and long distance transport, respectively.
Resumo:
Jupiter Family comets (JFCs) are short period comets which have recently entered the inner solar system, having previously orbited in the Kuiper Belt since the formation of the planets. We used two nights on the 3.6 m New Technology Telescope (NTT) at the European Southern Observatory, to obtain VRI photometry of three JFCs; 7P/Pons-Winnecke, 14P/Wolf and 92P/Sanguin. These were observed to be stellar in appearance. We find mean effective radii of 2.24 ± 0.02 km for 7P, 3.16 ± 0.01 km for 14P and 2.08 ± 0.01 km for 92P, assuming a geometric albedo of 0.04. From light-curves for each comet we find rotation periods of 7.53 ± 0.10 and 6.22 ± 0.05 h for 14P and 92P respectively. 7P exhibits brightness variations which imply a rotation period of 6.8 = Prot = 9.5 h. Assuming the nuclei to be ellipsoidal the measured brightness variations imply minimum axial ratios a/b of 1.3 ± 0.1 for 7P and 1.7 ± 0.1 for both 14P and 92P. This in turn implies minimum densities of 0.23 ± 0.08 g cm-3 for 7P, 0.32 ± 0.02 g cm-3 for 14P and 0.49 ± 0.06 g cm-3 for 92P. Finally, we measure colour indices of (V-R) = 0.40 ± 0.05 and (R-I) = 0.41 ± 0.06 for 7P/Pons-Winnecke, (V-R) = 0.57 ± 0.07 and (R-I) = 0.51 ± 0.06 for 14P/Wolf, and (V-R) = 0.54 ± 0.04 and (R-I) = 0.54 ± 0.04 for 92P/Sanguin.
Resumo:
Nicarbazin and halofuginone have been widely used as coccidiostats for the prevention and treatment of coccidiosis in poultry. It has been shown that accidental cross-contamination of feed can lead to residues of these compounds in eggs and/or muscle. This paper describes a direct competitive assay for detecting halofuginone and nicarbazin, developed as qualitative screening assay. In an optimized competitive ELISA, antibodies showed 50% binding inhibition at approximately 0.08 ng ml(-1) for halofuginone and 2.5 ng ml(-1) for dinitrocarbanilide (marker residue for nicarbazin). Extraction from the matrix was carried out with acetonitrile followed by a wash with hexane. The assay's detection capability (CCbeta) for halofuginone was
Resumo:
We report the discovery of a 7.3 M-J exoplanet WASP-14b, one of the most massive transiting exoplanets observed to date. The planet orbits the 10th-magnitude F5V star USNO-B1 11118-0262485 with a period of 2.243 752 d and orbital eccentricity e = 0.09. A simultaneous fit of the transit light curve and radial velocity measurements yields a planetary mass of 7.3 +/- 0.5 M-J and a radius of 1.28 +/- 0.08 R-J. This leads to a mean density of about 4.6 g cm(-3) making it the densest transiting exoplanets yet found at an orbital period less than 3 d. We estimate this system to be at a distance of 160 +/- 20 pc. Spectral analysis of the host star reveals a temperature of 6475 +/- 100 K, log g = 4.07 cm s(-2) and v sin i = 4.9 +/- 1.0 km s(-1), and also a high lithium abundance, log N(Li) = 2.84 +/- 0.05. The stellar density, effective temperature and rotation rate suggest an age for the system of about 0.5-1.0 Gyr.
Resumo:
Applications such as soil, rock and oil-well grouting all require enormous amounts of cement and are good examples of areas where a high volume of fly ash could partially replace cement to produce low-cost, environmentally safe and durable concrete. There is an increasing need to identify the rheological properties of cement grout using a simple test to determine the fluidity, and other properties of underwater grouts such as washout resistance and compressive strength. This paper presents statistical models developed using a fractorial design which was carried out to model the influence of key parameters on properties affecting the performance of underwater grout. Such responses of fluidity included mini-slump and flow time measured by Marsh cone, washout resistance, unit weight and compressive strength. The models are valid for mixes with 0.40 to 0.60 water-to-cementitious materials ratio, 0.02 to 0.08% of anti-washout admixture, by mass of binder, and 0.6 to 1.8% of superplasticizer, by mass of cementitious materials. The grout was made with 50% of pulverized-fuel ash replacement, by mass ofcementitious materials. Also presented are the derived models that enable the identification of underlying primary factors and their interactions that influence the modelled responses of underwater cement grout. Such parameters can be useful to reduce the test protocol needed for proportioning of underwater cement grout. This paper highlighted the influence of W/CM and dosage of antiwashout admixture and superplasticizer on fluidity, washout resistance and compressive strength and attempted also to demonstrate the usefulness of the models to improve understanding of trade-offs between parameters.
Resumo:
We report the discovery of WASP-26b, a moderately over-sized Jupiter-mass exoplanet transiting its 11.3-mag early-G-type host star (1SWASP J001824.70-151602.3; TYC 5839-876-1) every 2.7566 days. A simultaneous fit to transit photometry and radial-velocity measurements yields a planetary mass of 1.02 ± 0.03 MJup and radius of 1.32 ± 0.08 RJup. The host star, WASP-26, has a mass of 1.12 ± 0.03 M? and a radius of 1.34 ± 0.06 R? and is in a visual double with a fainter K-type star. The two stars are at least a common-proper motion pair with a common distance of around 250 ± 15 pc and an age of 6 ± 2 Gy.