997 resultados para yersinia intermedia
Resumo:
Se comprueba la mejora en el aislamiento acústico entre recintos de la colocación de una capa de arean entre el solado y el forjado
Resumo:
Propuesta sobre la mejora barrial en la localidad de ‘Mhamid Nuevo. Se pretende aportar una mirada nueva sobre las posibilidades de futuro de dicho núcleo de población en el ámbito del urbanismo, la arquitectura, la construcción, las infraestructuras y algunos puntos de encuentro entre disciplinas. El objetivo último es hacer una pequeña contribución al trabajo de las personas implicadas en el desarrollo de Mhamid, empezando por los habitantes, las asociaciones, los responsables políticos y los técnicos trabajando en el lugar. Es evidente que no se trata de un proyecto terminado sino de un paso ligado al esfuerzo de la asociación Terrachidia en los últimos dos años que, si bien se centra en el estudio y las intervenciones sobre el patrimonio material e inmaterial, también aborda otras iniciativas de desarrollo. Precisamente se trata aquí de realizar un primer acercamiento a Mhamid Nuevo desde la consolidación y mejora de las condiciones de habitabilidad cubriendo las necesidades urgentes de cobijo, espacio público, infraestructuras y servicios imprescindibles para que Mhamid siga vivo.
Resumo:
Ancient septicemic plague epidemics were reported to have killed millions of people for 2 millenniums. However, confident diagnosis of ancient septicemia solely on the basis of historical clinical observations is not possible. The lack of suitable infected material has prevented direct demonstration of ancient septicemia; thus, the history of most infections such as plague remains hypothetical. The durability of dental pulp, together with its natural sterility, makes it a suitable material on which to base such research. We hypothesized that it would be a lasting refuge for Yersinia pestis, the plague agent. DNA extracts were made from the dental pulp of 12 unerupted teeth extracted from skeletons excavated from 16th and 18th century French graves of persons thought to have died of plague (“plague teeth”) and from 7 ancient negative control teeth. PCRs incorporating ancient DNA extracts and primers specific for the human β-globin gene demonstrated the absence of inhibitors in these preparations. The incorporation of primers specific for Y. pestis rpoB (the RNA polymerase β-subunit-encoding gene) and the recognized virulence-associated pla (the plasminogen activator-encoding gene) repeatedly yielded products that had a nucleotide sequence indistinguishable from that of modern day isolates of the bacterium. The specific pla sequence was obtained from 6 of 12 plague skeleton teeth but 0 of 7 negative controls (P < 0.034, Fisher exact test). A nucleic acid-based confirmation of ancient plague was achieved for historically identified victims, and we have confirmed the presence of the disease at the end of 16th century in France. Dental pulp is an attractive target in the quest to determine the etiology of septicemic illnesses detected in ancient corpses. Molecular techniques could be applied to this material to resolve historical outbreaks.
Resumo:
Pathogenic Yersinia spp. carry a large common plasmid that encodes a number of essential virulence determinants. Included in these factors are the Yersinia-secreted proteins called Yops. We analyzed the consequences of wild-type and mutant strains of Yersinia pseudotuberculosis interactions with the macrophage cell line RAW264.7 and murine bone marrow-derived macrophages. Wild-type Y. pseudotuberculosis kills ≈70% of infected RAW264.7 macrophages and marrow-derived macrophages after an 8-h infection. We show that the cell death mediated by Y. pseudotuberculosis is apoptosis. Mutant Y. pseudotuberculosis that do not make any Yop proteins no longer cause host cell death. Attachment to host cells via invasin or YadA is necessary for the cell death phenotype. Several Yop mutant strains that fail to express one or more Yop proteins were engineered and then characterized for their ability to cause host cell death. A mutant with a polar insertion in YpkA Ser/Thr kinase that does not express YpkA or YopJ is no longer able to cause apoptosis. In contrast, a mutant no longer making YopE or YopH (a tyrosine phosphatase) induces apoptosis in macrophages similar to wild type. When yopJ is added in trans to the ypkAyopJ mutant, the ability of this strain to signal programmed cell death in macrophages is restored. Thus, YopJ is necessary for inducing apoptosis. The ability of Y. pseudotuberculosis to promote apoptosis of macrophages in cell culture suggests that this process is important for the establishment of infection in the host and for evasion of the host immune response.
Resumo:
Plague, one of the most devastating diseases of human history, is caused by Yersinia pestis. In this study, we analyzed the population genetic structure of Y. pestis and the two other pathogenic Yersinia species, Y. pseudotuberculosis and Y. enterocolitica. Fragments of five housekeeping genes and a gene involved in the synthesis of lipopolysaccharide were sequenced from 36 strains representing the global diversity of Y. pestis and from 12–13 strains from each of the other species. No sequence diversity was found in any Y. pestis gene, and these alleles were identical or nearly identical to alleles from Y. pseudotuberculosis. Thus, Y. pestis is a clone that evolved from Y. pseudotuberculosis 1,500–20,000 years ago, shortly before the first known pandemics of human plague. Three biovars (Antiqua, Medievalis, and Orientalis) have been distinguished by microbiologists within the Y. pestis clone. These biovars form distinct branches of a phylogenetic tree based on restriction fragment length polymorphisms of the locations of the IS100 insertion element. These data are consistent with previous inferences that Antiqua caused a plague pandemic in the sixth century, Medievalis caused the Black Death and subsequent epidemics during the second pandemic wave, and Orientalis caused the current plague pandemic.
Resumo:
Yersiniae, causative agents of plague and gastrointestinal diseases, secrete and translocate Yop effector proteins into the cytosol of macrophages, leading to disruption of host defense mechanisms. It is shown in this report that Yersinia enterocolitica induces apoptosis in macrophages and that this effect depends on YopP. Functional secretion and translocation mechanisms are required for YopP to act, strongly suggesting that this protein exerts its effect intracellularly, after translocation into the macrophages. YopP shows a high level of sequence similarity with AvrRxv, an avirulence protein from Xanthomonas campestris, a plant pathogen that induces programmed cell death in plant cells. This indicates possible similarities between the strategies used by pathogenic bacteria to elicit programmed cell death in both plant and animal hosts.
Resumo:
A number of pathogenic, Gram-negative bacteria are able to secrete specific proteins across three membranes: the inner and outer bacterial membrane and the eukaryotic plasma membrane. In the pathogen Yersinia enterocolitica, the primary structure of the secreted proteins as well as of the components of the secretion machinery, both plasmid-encoded, is known. However, the mechanism of protein translocation is largely unknown. Here we show that Y. enterocolitica polymerizes a 6-kDa protein of the secretion machinery into needles that are able to puncture the eukaryotic plasma membrane. These needles form a conduit for the transport of specific proteins from the bacterial to the eukaryotic cytoplasm, where they exert their cytotoxic activity. In negatively stained electron micrographs, the isolated needles were 60–80 nm long and 6–7 nm wide and contained a hollow center of about 2 nm. Our data indicate that it is the polymerization of the 6-kDa protein into these needles that provides the force to perforate the eukaryotic plasma membrane.
Resumo:
Prepared for Office of Research and Development, U.S. Environmental Protection Agency under contract 68-01-0729, program element 1H1093.
Resumo:
Bibliography: p. 5-6.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Copyright © 2015. Published by Elsevier Ltd. E.W. was supported by a PhD studentship from the Ministry of Science and Technology of Thailand and Mahasarakham University. T.W. received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland), that is funded by the Scottish Funding Council (grant reference HR09011). This research was also funded by the European Commission under the 7th Framework Programme for Research and Technological Development (FP7) of the European Union (grant agreement No. 311993 TARGETFISH).
Resumo:
Acknowledgements This work was funded by the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs, grant G1100675). The authors are grateful to the aquarium staff at the University of Aberdeen (Karen Massie) and Dr David Smail at Marine Scotland for valuable discussion during the establishment of the experimental design.
Resumo:
Programa de doctorado: Microbiología y enfermedades infecciosas
Resumo:
Pathogenesis of an isolate of Yersinia rukeri-like bacterium was studied in rainbow trout weighting 8-12 g at 20C and acceptable water quality for 20 days.