995 resultados para wireless universal serial-bus dongle
Resumo:
This study focuses on weather effects on daily bus ridership in Brisbane, given bus’ dominance in this city. The weather pattern of Brisbane varies by season according to its sub-tropical climate characteristics. Bus is prone to inclement weather condition as it shares the road system with general traffic. Moreover, bus stops generally offer less or sometimes no protection from adverse weather. Hence, adverse weather conditions such as rain are conjectured to directly impact on daily travel behaviour patterns. There has been limited Australian research on the impact of weather on daily transit ridership. This study investigates the relationship between rainy day and daily bus ridership for the period of 2010 to 2012. Overall, rainfall affects negatively with varying impacts on different transit groups. However, this analysis confirmed a positive relationship between consecutive rainy days (rain continuing for 3 or more days). A possible explanation could be that people may switch their transport mode to bus to avoid high traffic congestion and higher accident potentiality on rainy days. Also, Brisbane’s segregated busway (BRT) corridor works favourably towards this mode choice. Our study findings enhance the fundamental understanding of traveller behaviour, particularly mode choice behaviour under adverse weather conditions.
Resumo:
For people with cognitive disabilities, technology is more often thought of as a support mechanism, rather than a source of division that may require intervention to equalize access across the cognitive spectrum. This paper presents a first attempt at formalizing the digital gap created by the generalization of search engines. This was achieved through the development of a mapping of cognitive abilities required by users to execute low- level tasks during a standard Web search task. The mapping demonstrates how critical these abilities are to successfully use search engines with an adequate level of independence. It will lead to a set of design guidelines for search engine interfaces that will allow for the engagement of users of all abilities, and also, more importantly, in search algorithms such as query suggestion and measure of relevance (i.e. ranking).
Resumo:
Safety is one of the major world health issues, and is even more acute for “vulnerable” road users, pedestrians and cyclists. At the same time, public authorities are promoting the active modes of transportation that involve these very users for their health benefits. It is therefore important to understand the factors and designs that provide the best safety for vulnerable road users and encourage more people to use these modes. Qualitative and quantitative shortcomings of collisions make it necessary to use surrogate measures of safety in studying these modes. Some interactions without a collision such as conflicts can be good surrogates of collisions as they are more frequent and less costly. To overcome subjectivity and reliability challenges, automatic conflict analysis using video cameras and deriving users’ trajectories is a solution to overcome shortcomings of manual conflict analysis. The goal of this paper is to identify and characterize various interactions between cyclists and pedestrians at bus stops along bike paths using a fully automated process. Three conflict severity indicators are calculated and adapted to the situation of interest to capture those interactions. A microscopic analysis of users’ behavior is proposed to explain interactions more precisely. Eventually, the study aims to show the capability of automatically collecting and analyzing data for pedestrian-cyclist interactions at bus stops along segregated bike paths in order to better understand the actual and perceived risks of these facilities.
Resumo:
100 year old gasoline engine technology vehicles have now become one of the major contributors of greenhouse gases. Plug-in Electric Vehicles (PEVs) have been proposed to achieve environmental friendly transportation. Even though the PEV usage is currently increasing, a technology breakthrough would be required to overcome battery related drawbacks. Although battery technology is evolving, drawbacks inherited with batteries such as; cost, size, weight, slower charging characteristic and low energy density would still be dominating constrains for development of EVs. Furthermore, PEVs have not been accepted as preferred choice by many consumers due to charging related issues. To address battery related limitations, the concept of dynamic Wireless Power Transfer (WPT) enabled EVs have been proposed in which EV is being charged while it is in motion. WPT enabled infrastructure has to be employed to achieve dynamic EV charging concept. The weight of the battery pack can be reduced as the required energy storage is lower if the vehicle can be powered wirelessly while driving. Stationary WPT charging where EV is charged wirelessly when it is stopped, is simpler than dynamic WPT in terms of design complexity. However, stationary WPT does not increase vehicle range compared to wired-PEVs. State-of-art WPT technology for future transportation is discussed in this chapter. Analysis of the WPT system and its performance indices are introduced. Modelling the WPT system using different methods such as equivalent circuit theory, two port network theory and coupled mode theory is described illustrating their own merits in Sect. 2.3. Both stationary and dynamic WPT for EV applications are illustrated in Sect. 2.4. Design challenges and optimization directions are analysed in Sect. 2.5. Adaptive tuning techniques such as adaptive impedance matching and frequency tuning are also discussed. A case study for optimizing resonator design is presented in Sect. 2.6. Achievements by the research community is introduced highlighting directions for future research.
Resumo:
The Government of Bangladesh is planning to develop and implement Bus Rapid Transit (BRT) in Dhaka city. This paper presents a stated choice survey conducted to understand workers’ attitudes toward BRT in Dhaka. The survey data are analysed using a multinomial logit (MNL) model to scrutinize social and economic factors’ impact on participant’s mode choices. Analysis results reveal that males, and workers with higher age, education qualification, and income have greater tendency towards choosing BRT.
Resumo:
This study investigates: –how travel and socio-demographic attributes act on workers’ mode choice decisions in Dhaka –whether Dhaka’s commuters would choose BRT for their work trip once implemented •Very limited research exists on users’ perceptions of BRT in developing countries’ megacities •We adopted a discrete choice modelling approach •As BRT has not yet been implemented in Dhaka, we collected Stated Choice (SC) survey data including a hypothetical BRT mode to understand factors important to workers’ mode choice decisions •We compare the impact of travel factors between Dhaka and cities of developed countries
Resumo:
This study explores how explicit transit quality of services (TQoS) measures including service frequency, service span, and travel time ratio, along with implicit environmental predictors such as topographic grade factor influence bus ridership using a case study city of Brisbane, Australia. The primary hypothesis tested was that bus ridership is higher within suburbs with high transit quality of service than suburbs that have limited service quality. Using Multiple Linear Regression (MLR) this study identifies a strong positive relationship between route intensity (bus-km/h-km2) and bus ridership, indicating that increasing both service frequency and spatial route density correspond to higher bus ridership. Additionally, travel time ratio (in-vehicle transit travel time to in-vehicle auto travel time) is also found to have significant negative association with ridership within a suburb, reflecting a decline in transit use with increased travel time ratio. Conversely, topographic grade and service span are not found to exert any significant impact on bus ridership in a suburb. Our study findings enhance the fundamental understanding of traveller behaviour which is informative to urban transportation policy, planning and provision.
Resumo:
This study investigates whether an Australian city’s suburbs having high transit Quality of Service (QoS) are associated with higher transit ridership than those having low transit QoS •We explore how QoS measures including service frequency, service span, service coverage, and travel time ratio, along with implicit environmental predictors such as topographic grade factor influence bus ridership •We applied Multiple Linear Regression (MLR) to examine the relationship between QoS and ridership •Its outcomes enhance our understanding of transit user behavior, which is informative to urban transportation policy, planning, and provision
Resumo:
We present a new approach for creating and implementing an ad-hoc underwater acoustic sensor network based on connecting a small processor to the serial port of a commercial CDMA acoustic modem. The processor acts as a "node controller" providing the networking layer that the modems lack. The ad-hoc networking protocol is based on a modified dynamic source routing (DSR) approach and can be configured for maximising information throughput or minimising energy expenditure. The system was developed in simulation and then evaluated during field trials using a 10 node deployment. Experimental results show reliable multi-hop networking under a variety of network configurations, with the added ability to determine internode ranges to within 1.5 m for localisation.
Resumo:
Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology.
Resumo:
Underwater wireless sensor networks (UWSNs) have become the seat of researchers' attention recently due to their proficiency to explore underwater areas and design different applications for marine discovery and oceanic surveillance. One of the main objectives of each deployed underwater network is discovering the optimized path over sensor nodes to transmit the monitored data to onshore station. The process of transmitting data consumes energy of each node, while energy is limited in UWSNs. So energy efficiency is a challenge in underwater wireless sensor network. Dual sinks vector based forwarding (DS-VBF) takes both residual energy and location information into consideration as priority factors to discover an optimized routing path to save energy in underwater networks. The modified routing protocol employs dual sinks on the water surface which improves network lifetime. According to deployment of dual sinks, packet delivery ratio and the average end to end delay are enhanced. Based on our simulation results in comparison with VBF, average end to end delay reduced more than 80%, remaining energy increased 10%, and the increment of packet reception ratio was about 70%.
Resumo:
This article argues that the secular liberal and positivist foundations of the modern Western legal system render it violent. In particular, the liberal exclusion of faith and subjectivity in favour of abstract and universal reason in conjunction with its privileging of individual autonomy at the expense of the community leads to alienation of the individual from the community. Similarly, the positivist exclusion of faith and theology from law, with its enforced conformity to the posited law, also results in this violence of alienation. In response, this article proposes a new foundation for law, a natural law based in the truth of Trinitarian theology articulated by John Milbank. In the Trinity, the members exist as a perfect unity in diversity, providing a model for the reconciliation of the legal individual and community: the law of love. Through the law of love as the basic norm, individuals love their neighbours as themselves, reconciling the particular and the universal, and providing a community of peace rather than violence.