999 resultados para water erosion
Resumo:
The biochemical responses of the enzymatic antioxidant system of a drought-tolerant cultivar (IACSP 94-2094) and a commercial cultivar in Brazil (IACSP 95-5000) grown under two levels of soil water restriction (70% and 30% Soil Available Water Content) were investigated. IACSP 94-2094 exhibited one additional active superoxide dismutase (Cu/Zn-SOD VI) isoenzyme in comparison to IACSP 95-5000, possibly contributing to the heightened response of IACSP 94-2094 to the induced stress. The total glutathione reductase (GR) activity increased substantially in IACSP 94-2094 under conditions of severe water stress; however, the appearance of a new GR isoenzyme and the disappearance of another isoenzyme were found not to be related to the stress response because the cultivars from both treatment groups (control and water restrictions) exhibited identical changes. Catalase (CAT) activity seems to have a more direct role in H2O2 detoxification under water stress condition and the shift in isoenzymes in the tolerant cultivar might have contributed to this response, which may be dependent upon the location where the excessive H2O2 is being produced under stress. The improved performance of IACSP 94-2094 under drought stress was associated with a more efficient antioxidant system response, particularly under conditions of mild stress.
Resumo:
Different types of water bodies, including lakes, streams, and coastal marine waters, are often susceptible to fecal contamination from a range of point and nonpoint sources, and have been evaluated using fecal indicator microorganisms. The most commonly used fecal indicator is Escherichia coli, but traditional cultivation methods do not allow discrimination of the source of pollution. The use of triplex PCR offers an approach that is fast and inexpensive, and here enabled the identification of phylogroups. The phylogenetic distribution of E. coli subgroups isolated from water samples revealed higher frequencies of subgroups A1 and B23 in rivers impacted by human pollution sources, while subgroups D1 and D2 were associated with pristine sites, and subgroup B1 with domesticated animal sources, suggesting their use as a first screening for pollution source identification. A simple classification is also proposed based on phylogenetic subgroup distribution using the w-clique metric, enabling differentiation of polluted and unpolluted sites.
Resumo:
To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness.
A Feasibility Study Of Fricke Dosimetry As An Absorbed Dose To Water Standard For 192ir Hdr Sources.
Resumo:
High dose rate brachytherapy (HDR) using 192Ir sources is well accepted as an important treatment option and thus requires an accurate dosimetry standard. However, a dosimetry standard for the direct measurement of the absolute dose to water for this particular source type is currently not available. An improved standard for the absorbed dose to water based on Fricke dosimetry of HDR 192Ir brachytherapy sources is presented in this study. The main goal of this paper is to demonstrate the potential usefulness of the Fricke dosimetry technique for the standardization of the quantity absorbed dose to water for 192Ir sources. A molded, double-walled, spherical vessel for water containing the Fricke solution was constructed based on the Fricke system. The authors measured the absorbed dose to water and compared it with the doses calculated using the AAPM TG-43 report. The overall combined uncertainty associated with the measurements using Fricke dosimetry was 1.4% for k = 1, which is better than the uncertainties reported in previous studies. These results are promising; hence, the use of Fricke dosimetry to measure the absorbed dose to water as a standard for HDR 192Ir may be possible in the future.
Resumo:
It is well known that trichomes protect plant organs, and several studies have investigated their role in the adaptation of plants to harsh environments. Recent studies have shown that the production of hydrophilic substances by glandular trichomes and the deposition of this secretion on young organs may facilitate water retention, thus preventing desiccation and favouring organ growth until the plant develops other protective mechanisms. Lychnophora diamantinana is a species endemic to the Brazilian 'campos rupestres' (rocky fields), a region characterized by intense solar radiation and water deficits. This study sought to investigate trichomes and the origin of the substances observed on the stem apices of L. diamantinana. Samples of stem apices, young and expanded leaves were studied using standard techniques, including light microscopy and scanning and transmission electron microscopy. Histochemical tests were used to identify the major groups of metabolites present in the trichomes and the hyaline material deposited on the apices. Non-glandular trichomes and glandular trichomes were observed. The material deposited on the stem apices was hyaline, highly hydrophilic and viscous. This hyaline material primarily consists of carbohydrates that result from the partial degradation of the cell wall of uniseriate trichomes. This degradation occurs at the same time that glandular trichomes secrete terpenoids, phenolic compounds and proteins. These results suggest that the non-glandular trichomes on the leaves of L. diamantinana help protect the young organ, particularly against desiccation, by deposition of highly hydrated substances on the apices. Furthermore, the secretion of glandular trichomes probably repels herbivore and pathogen attacks.
Resumo:
A novel capillary electrophoresis method using capacitively coupled contactless conductivity detection is proposed for the determination of the biocide tetrakis(hydroxymethyl)phosphonium sulfate. The feasibility of the electrophoretic separation of this biocide was attributed to the formation of an anionic complex between the biocide and borate ions in the background electrolyte. Evidence of this complex formation was provided by (11) B NMR spectroscopy. A linear relationship (R(2) = 0.9990) between the peak area of the complex and the biocide concentration (50-900 μmol/L) was found. The limit of detection and limit of quantification were 15.0 and 50.1 μmol/L, respectively. The proposed method was applied to the determination of tetrakis(hydroxymethyl)phosphonium sulfate in commercial formulations, and the results were in good agreement with those obtained by the standard iodometric titration method. The method was also evaluated for the analysis of tap water and cooling water samples treated with the biocide. The results of the recovery tests at three concentration levels (300, 400, and 600 μmol/L) varied from 75 to 99%, with a relative standard deviation no higher than 9%.
Resumo:
Enormous amounts of pesticides are manufactured and used worldwide, some of which reach soils and aquatic systems. Glyphosate is a non-selective herbicide that is effective against all types of weeds and has been used for many years. It can therefore be found as a contaminant in water, and procedures are required for its removal. This work investigates the use of biopolymeric membranes prepared with chitosan (CS), alginate (AG), and a chitosan/alginate combination (CS/AG) for the adsorption of glyphosate present in water samples. The adsorption of glyphosate by the different membranes was investigated using the pseudo-first order and pseudo-second order kinetic models, as well as the Langmuir and Freundlich isotherm models. The membranes were characterized regarding membrane solubility, swelling, mechanical, chemical and morphological properties. The results of kinetics experiments showed that adsorption equilibrium was reached within 4 h and that the CS membrane presented the best adsorption (10.88 mg of glyphosate/g of membrane), followed by the CS/AG bilayer (8.70 mg of glyphosate/g of membrane). The AG membrane did not show any adsorption capacity for this herbicide. The pseudo-second order model provided good fits to the glyphosate adsorption data on CS and CS/AG membranes, with high correlation coefficient values. Glyphosate adsorption by the membranes could be fitted by the Freundlich isotherm model. There was a high affinity between glyphosate and the CS membrane and moderate affinity in the case of the CS/AG membrane. Physico-chemical characterization of the membranes showed low values of solubility in water, indicating that the membranes are stable and not soluble in water. The SEM and AFM analysis showed evidence of the presence of glyphosate on CS membranes and on chitosan face on CS/AG membranes. The results showed that the glyphosate herbicide can be adsorbed by chitosan membranes and the proposed membrane-based methodology was successfully used to treat a water sample contaminated with glyphosate. Biopolymer membranes therefore potentially offer a versatile method to eliminate agricultural chemicals from water supplies.
Resumo:
Tomato (Solanum lycopersicum) shows three growth habits: determinate, indeterminate and semi-determinate. These are controlled mainly by allelic variation in the SELF-PRUNING (SP) gene family, which also includes the florigen gene SINGLE FLOWER TRUSS (SFT). Determinate cultivars have synchronized flower and fruit production, which allows mechanical harvesting in the tomato processing industry, whereas indeterminate ones have more vegetative growth with continuous flower and fruit formation, being thus preferred for fresh market tomato production. The semi-determinate growth habit is poorly understood, although there are indications that it combines advantages of determinate and indeterminate growth. Here, we used near-isogenic lines (NILs) in the cultivar Micro-Tom (MT) with different growth habit to characterize semi-determinate growth and to determine its impact on developmental and productivity traits. We show that semi-determinate genotypes are equivalent to determinate ones with extended vegetative growth, which in turn impacts shoot height, number of leaves and either stem diameter or internode length. Semi-determinate plants also tend to increase the highly relevant agronomic parameter Brix×ripe yield (BRY). Water-use efficiency (WUE), evaluated either directly as dry mass produced per amount of water transpired or indirectly through C isotope discrimination, was higher in semi-determinate genotypes. We also provide evidence that the increases in BRY in semi-determinate genotypes are a consequence of an improved balance between vegetative and reproductive growth, a mechanism analogous to the conversion of the overly vegetative tall cereal varieties into well-balanced semi-dwarf ones used in the Green Revolution.
Resumo:
The taxonomic position of a bacterium isolated from water samples from the Rio Negro, in Amazon, Brazil, was determined by using a polyphasic approach. The organism formed a distinct phyletic line in the Chromobacterium 16S rRNA gene tree and had chemotaxonomic and morphological properties consistent with its classification in this genus. It was found to be closely related to Chromobacterium vaccinii DSM 25150(T) (98.6 % 16S rRNA gene similarity) and shared 98.5 % 16S rRNA gene similarity with Chromobacterium piscinae LGM 3947(T). DNA-DNA relatedness studies showed that isolate CBMAI 310(T) belongs to distinct genomic species. The isolate was readily distinguished from the type strain of these species using a combination of phenotypic and chemotaxonomic properties. Thus, based on genotypic and phenotypic data, it is proposed that isolate CBMAI 310(T) (=DSM 26508(T)) be classified in the genus Chromobacterium as the type strain of a novel species, namely, Chromobacterium amazonense sp. nov.
Resumo:
Trees from tropical montane cloud forest (TMCF) display very dynamic patterns of water use. They are capable of downwards water transport towards the soil during leaf-wetting events, likely a consequence of foliar water uptake (FWU), as well as high rates of night-time transpiration (Enight) during drier nights. These two processes might represent important sources of water losses and gains to the plant, but little is known about the environmental factors controlling these water fluxes. We evaluated how contrasting atmospheric and soil water conditions control diurnal, nocturnal and seasonal dynamics of sap flow in Drimys brasiliensis (Miers), a common Neotropical cloud forest species. We monitored the seasonal variation of soil water content, micrometeorological conditions and sap flow of D. brasiliensis trees in the field during wet and dry seasons. We also conducted a greenhouse experiment exposing D. brasiliensis saplings under contrasting soil water conditions to deuterium-labelled fog water. We found that during the night D. brasiliensis possesses heightened stomatal sensitivity to soil drought and vapour pressure deficit, which reduces night-time water loss. Leaf-wetting events had a strong suppressive effect on tree transpiration (E). Foliar water uptake increased in magnitude with drier soil and during longer leaf-wetting events. The difference between diurnal and nocturnal stomatal behaviour in D. brasiliensis could be attributed to an optimization of carbon gain when leaves are dry, as well as minimization of nocturnal water loss. The leaf-wetting events on the other hand seem important to D. brasiliensis water balance, especially during soil droughts, both by suppressing tree transpiration (E) and as a small additional water supply through FWU. Our results suggest that decreases in leaf-wetting events in TMCF might increase D. brasiliensis water loss and decrease its water gains, which could compromise its ecophysiological performance and survival during dry periods.
Resumo:
Current Brazilian law regarding water fluoridation classification is dichotomous with respect to the risks of and benefits for oral diseases, and fluoride (F) concentrations less than 0.6 or above 0.8 mg F/L are considered outside the normal limits. Thus, the law does not consider that both caries and fluorosis are dependent on the dosage and duration of fluoride exposure because they are both chronic diseases. Therefore, this study evaluated the quality of water fluoridation in Maringá, PR, Brazil, considering a new classification for the concentration of F in water the supply, based on the anticaries benefit and risk of fluorosis (CECOL/USP, 2011). Water samples (n = 325) were collected monthly over one year from 28 distribution water networks: 20 from treatment plants and 8 from artesian wells. F concentrations were determined using a specific ion electrode. The average F concentration was 0.77 mg F/L (ppm F), ranging from 0.44 to 1.22 mg F/L. Considering all of the water samples analyzed, 83.7% of them presented from 0.55 to 0.84 mg F/L, and according to the new classification used, they would provide maximum anticaries benefit with a low risk of fluorosis. This percentage was lower (75.4%) in the water samples supplied from artesian wells than from those distributed by the treatment plant (86%). In conclusion, based on the new classification of water F concentrations, the quality of water fluoridation in Maringá is adequate and is within the range of the best balance between risk and benefit.
Resumo:
Several biotechnological processes can show an undesirable formation of emulsions making difficult phase separation and product recovery. The breakup of oil-in-water emulsions stabilized by yeast was studied using different physical and chemical methods. These emulsions were composed by deionized water, hexadecane and commercial yeast (Saccharomyces cerevisiae). The stability of the emulsions was evaluated varying the yeast concentration from 7.47 to 22.11% (w/w) and the phases obtained after gravity separation were evaluated on chemical composition, droplet size distribution, rheological behavior and optical microscopy. The cream phase showed kinetic stability attributed to mechanisms as electrostatic repulsion between the droplets, a possible Pickering-type stabilization and the viscoelastic properties of the concentrated emulsion. Oil recovery from cream phase was performed using gravity separation, centrifugation, heating and addition of demulsifier agents (alcohols and magnetic nanoparticles). Long centrifugation time and high centrifugal forces (2h/150,000×g) were necessary to obtain a complete oil recovery. The heat treatment (60°C) was not enough to promote a satisfactory oil separation. Addition of alcohols followed by centrifugation enhanced oil recovery: butanol addition allowed almost complete phase separation of the emulsion while ethanol addition resulted in 84% of oil recovery. Implementation of this method, however, would require additional steps for solvent separation. Addition of charged magnetic nanoparticles was effective by interacting electrostatically with the interface, resulting in emulsion destabilization under a magnetic field. This method reached almost 96% of oil recovery and it was potentially advantageous since no additional steps might be necessary for further purifying the recovered oil.
Resumo:
The objective of this study was to quantify the effect of plonk on compressive behavior and mechanical attributes such as consistency, optimum moisture for compaction and maximum density of a Red-Yellow Latosol (Oxisol) to evaluate the effect of plonk and compaction state in splashed particles, from Lavras (MG) region. The plonk was obtained from an artisanal sugarcane brandy alembic. Undisturbed and disturbed soil samples were collected at 0 to 3 cm and 60 to 63 cm depths. Disturbed soil samples were used for soil characterization, determination of consistence limits and Normal Proctor essay after material incubation with plonk. Undisturbed soil samples were saturated with plonk or distilled water (control) during 48 hours for testing the compressibility and resistance to splash by using simulated rainfall. The plonk altered the consistence limits of studied layers. For the 0-3 cm layer, the plonk reduced the friable range, and for the 60-63 cm layer the effect was in the opposite direction. For both layers, the plonk increased Dmax and decreased Uoptimum. Regardless of the plonk treatment, both layers presented the same load support capacity. The compaction degree of samples influenced the splash erosion. The increase of the applied pressure over the samples resulted in increase of splash material quantity. At the 60-63 cm layer, the plonk treatment reduced the splash material quantity by increasing the applied pressure, mainly when the samples were at field capacity.
Resumo:
This work investigated the cytotoxic and genotoxic potential of water from the River Paraíba do Sul (Brazil) using Allium cepa roots. An anatomo-morphological parameter (root length), mitotic indices, and frequency of micronuclei were analysed. Eight bulbs were chosen at random for treatment for 24 to 120 hours with the River water collected in the years of 2005 and 2006 from sites in the cities of Tremembé and Aparecida (São Paulo state, Brazil). Daily measurements of the length of the roots grown from each bulb were carried out throughout the experiment. Mitotic index (MI) and frequency of micronuclei (MN) were determined for 2000 cells per root, using 3-5 root tips from other bulbs (7-10). Only in the roots treated with samples of the River water collected in 2005 in Tremembé city was there a decrease in the root length growth compared to the respective control. However, a reduction in MI values was verified for both sites analysed for that year. Considering the data involving root length growth and especially MI values, a cytotoxic potential is suggested for the water of the River Paraíba do Sul at Tremembé and Aparecida, in the year of 2005. On the other hand, since in this year the MN frequency was not affected with the river water treatments, genotoxicity is not assumed for the river water sampled at the aforementioned places.
Resumo:
Increasing water scarcity and depleted water productivity in irrigated soils are inducing farmers to adopt improved varieties, such as those with high-capacity tolerance. The use of tolerant varieties of sugarcane might substantially avoid the decline of productivity under water deficit. This research aimed to evaluate the harmful effects of drought on the physiology of two sugarcane varieties (RB867515 and RB962962) during the initial development. Young plants were subjected to irrigation suspension until total stomata closure, and then rewatered. Significant reduction on stomatal conductance, transpiration, and net photosynthesis were observed. RB867515 showed a faster stomatal closure while RB962962 slowed the effects of drought on the gas exchanges parameters with a faster recovering after rewatering. Accumulation of carbohydrates, amino acids, proline, and protein in the leaves and roots of the stressed plants occurred in both varieties, substantially linked to reduction of the leaf water potential. Due to the severity of stress, this accumulation was not enough to maintain the cell turgor pressure, so relative water content was diminished. Water stress affected the contents of chlorophyll (a, b, and total) in both varieties, but not the levels of carotenoids. There was a significant reduction in dry matter under stress. In conclusion, RB962962 variety endured stressed conditions more than RB867515, since it slowed down the damaging effects of drought on the gas exchanges. In addition, RB962962 presented a faster recovery than RB867515, a feature that qualifies it as a variety capable of enduring short periods of drought without major losses in the initial stage of its development.