785 resultados para vagina cytology
Resumo:
Six veal calves were medicated with clenbuterol at 20 mu g kg bodyweightl day(-1) for 42 days before they were slaughtered, to evaluate the lesions and residues in target organs. Compared with six unmedicated calves the most noticeable changes were tracheal dilatation, decreased uterine weight, slight mucous hypersecretion in the uterus and vagina and depletion of liver glycogen. The highest concentrations of clenbuterol (62 to 128 ng/g(-1)) were recorded in the choroid/retina, and the aqueous humour had the lowest concentration (0.5 to 2.4 ng ml(-1)). The residue concentrations were higher than the maximum residue level set for clenbuterol (0.5 ng g(-1))
Resumo:
The localisation and distribution of neuropeptides in the peripheral nervous system of the pig roundworm Ascaris suum have been determined by an indirect immunofluorescence technique in conjunction with confocal microscopy. Of the 31 antisera tested, immunostaining was obtained only with antisera to peptide YY (PYY), pancreatic polypeptide (PP) and FMRFamide. Immunostaining for PYY and FMRFamide was evident in the amphidial and papillary ganglia associated with the anterior nerve ring and in the nerves from these ganglia that terminated in sensory receptors within the buccal lips of the parasite. The only peptide immunoreactivity (IR) observed in the reproductive system of either sex was that evident in the nerve supply to the distal region of the vagina in the female worm. It took the form of a well-developed plexus of parallel nerve fibres, cross-connectives and looped commissures. The nerve net diminished in the more proximal region of the vagina. PP-IR was less intense than that for PYY and FMRFamide and was more restricted in distribution, being confined to a small number of nerve fibres in the nerve supply to the vagina; it did not occur in the nerves supplying the anterior sensory receptors. The possible roles of neuropeptides in the sensory and reproductive biology of nematodes are discussed.
Resumo:
To date, 53 peptides with C-terminal RFamides have been identified by the genome sequencing project in the nematode, Caenorhabditis elegans. In this study the FMRFamide-related peptide (FaRP) KPSFVRFamide (879.90 Da [MH](+)) was structurally characterized from extracts of the nematode, Caenorhabditis elegans. Two copies of KPSFVRFamide are encoded by a gene designated flp-9. RT-PCR identified a single cDNA product which was confirmed as flp-9 by sequence determination. Flp-9 cDNA was isolated from larval stages of C. elegans but was not detected-in adult worms, indicating that its expression is may be developmentally regulated. KPSFVRFamide displays sequence homology to the nematode peptide, KPNFIRFamide (PF4). The physiological effects of KPSFVRFamide, PF4 and the chimeras, KPNFVRFamide and KPSFIRFamide, were measured on body wall muscle and the vagina vera of the parasitic nematode, Ascaris suum. KPNFVRFamide and KPNFIRFamide had Cl--dependent inhibitory activity on innervated and denervated muscle-preparations, whereas KPSFVRFamide and KPSFIRFamide did not elicit a detectable physiological effect. Although all 4 peptides had inhibitory effects on the vagina vera, KPSFVRFamide and KPSFIRFamide (threshold, greater than or equal to 0.1 mu M) were less potent than KPNFVRFamide and KPNFIRFamide (threshold, greater than or equal to 10 nM). (C) 1999 Academic Press.
Resumo:
The central (CNS) and peripheral (PNS) nervous systems of the cyclophyllidean tapeworm, Moniezia expansa, were examined for the presence of cholinergic, serotoninergic and peptidergic elements using enzyme cytochemical and immunocytochemical techniques in conjunction with light and confocal scanning laser microscopy. Cholinesterase activity and 5-hydroxytryptamine- and regulatory peptide-immunoreactivities (IRs) were localized to the nerve fibres and cell bodies of all of the major neuronal components in the CNS of the worm, including the cerebral ganglia and connecting commissure, the 10 longitudinal nerve cords and associated transverse ring commissures. Although each of the 3 systems appeared well developed and comprised a significant portion of the nervous system, the serotoninergic constituent was the most highly developed, consisting of a vast array of nerve fibres and cell bodies distributed throughout the strobila of the worm. A close association of cholinesterase reactivity and peptide-IRs was evident throughout the CNS, indicating the possible co-localization of acetylcholine and neuropeptides. Within the PNS, cholinergic activity and serotoninergic- and peptidergic-IRs occurred in the subtegumental network of nerve fibres and somatic musculature. Although all 3 neurochemical elements were present in the acetabula, they were found in different nerve fibres; only cholinergic and peptidergic cell bodies were found. The common genital opening, vagina and ootype regions of the reproductive system displayed a rich innervation of all 3 types of neuronal populations. Within the peptidergic system, immunostaining with antisera raised to the C-terminus of the neuropeptide Y superfamily of peptides and the invertebrate peptides, neuropeptide F (M. expansa) and FMRFamide was the most prevalent. Limited positive-IR for substance P and neurokinin A were also recorded in the CNS of the worm.
Resumo:
Background: Ineffective risk stratification can delay diagnosis of serious disease in patients with hematuria. We applied a systems biology approach to analyze clinical, demographic and biomarker measurements (n = 29) collected from 157 hematuric patients: 80 urothelial cancer (UC) and 77 controls with confounding pathologies.
Methods: On the basis of biomarkers, we conducted agglomerative hierarchical clustering to identify patient and biomarker clusters. We then explored the relationship between the patient clusters and clinical characteristics using Chi-square analyses. We determined classification errors and areas under the receiver operating curve of Random Forest Classifiers (RFC) for patient subpopulations using the biomarker clusters to reduce the dimensionality of the data.
Results: Agglomerative clustering identified five patient clusters and seven biomarker clusters. Final diagnoses categories were non-randomly distributed across the five patient clusters. In addition, two of the patient clusters were enriched with patients with ‘low cancer-risk’ characteristics. The biomarkers which contributed to the diagnostic classifiers for these two patient clusters were similar. In contrast, three of the patient clusters were significantly enriched with patients harboring ‘high cancer-risk” characteristics including proteinuria, aggressive pathological stage and grade, and malignant cytology. Patients in these three clusters included controls, that is, patients with other serious disease and patients with cancers other than UC. Biomarkers which contributed to the diagnostic classifiers for the largest ‘high cancer- risk’ cluster were different than those contributing to the classifiers for the ‘low cancer-risk’ clusters. Biomarkers which contributed to subpopulations that were split according to smoking status, gender and medication were different.
Conclusions: The systems biology approach applied in this study allowed the hematuric patients to cluster naturally on the basis of the heterogeneity within their biomarker data, into five distinct risk subpopulations. Our findings highlight an approach with the promise to unlock the potential of biomarkers. This will be especially valuable in the field of diagnostic bladder cancer where biomarkers are urgently required. Clinicians could interpret risk classification scores in the context of clinical parameters at the time of triage. This could reduce cystoscopies and enable priority diagnosis of aggressive diseases, leading to improved patient outcomes at reduced costs. © 2013 Emmert-Streib et al; licensee BioMed Central Ltd.
Resumo:
Aim-To develop an expert system model for the diagnosis of fine needle aspiration cytology (FNAC) of the breast.
Methods-Knowledge and uncertainty were represented in the form of a Bayesian belief network which permitted the combination of diagnostic evidence in a cumulative manner and provided a final probability for the possible diagnostic outcomes. The network comprised 10 cytological features (evidence nodes), each independently linked to the diagnosis (decision node) by a conditional probability matrix. The system was designed to be interactive in that the cytopathologist entered evidence into the network in the form of likelihood ratios for the outcomes at each evidence node.
Results-The efficiency of the network was tested on a series of 40 breast FNAC specimens. The highest diagnostic probability provided by the network agreed with the cytopathologists' diagnosis in 100% of cases for the assessment of discrete, benign, and malignant aspirates. A typical probably benign cases were given probabilities in favour of a benign diagnosis. Suspicious cases tended to have similar probabilities for both diagnostic outcomes and so, correctly, could not be assigned as benign or malignant. A closer examination of cumulative belief graphs for the diagnostic sequence of each case provided insight into the diagnostic process, and quantitative data which improved the identification of suspicious cases.
Conclusion-The further development of such a system will have three important roles in breast cytodiagnosis: (1) to aid the cytologist in making a more consistent and objective diagnosis; (2) to provide a teaching tool on breast cytological diagnosis for the non-expert; and (3) it is the first stage in the development of a system capable of automated diagnosis through the use of expert system machine vision.
Resumo:
DNA methyltransferase (DNMT) 3A and DNMT3B are both active de novo DNA methyltransferases required for development, whereas DNMT3L, which has no demonstrable methyltransferase activity, is required for methylation of imprinted genes in the oocyte. We show here that different mechanisms are used to restrict access by these proteins to their targets during germ cell development. Transcriptional control of the Dnmt3l promoter guarantees that message is low or absent except during periods of de novo activity. Use of an alternative promoter at the Dnmt3a locus produces the shorter Dnmt3a2 transcript in the germ line and postimplantation embryo only, whereas alternative splicing of the Dnmt3b transcript ensures that Dnmt3b1 is absent in the male prospermatogonia. Control of subcellular protein localization is a common theme for DNMT3A and DNMT3B, as proteins were seen in the nucleus only when methylation was occurring. These mechanisms converge to ensure that the only time that functional products from each locus are present in the germ cell nuclei is around embryonic day 17.5 in males and after birth in the growing oocytes in females.
Resumo:
PURPOSE: To assess the effects of advanced glycation endproduct (AGE) modification of vascular basement membrane (BM) on endothelin-1 (Et-1) induced intracellular [Ca2+] ([Ca2+]i) homeostasis and contraction in retinal microvascular pericytes (RMP). METHODS: RMPs were isolated from bovine retinal capillaries and propagated on AGE modified BM extract (AGE-BM) or non-modified native BM. Cytosolic Ca2+ was estimated using fura-2 microfluorimetry and cellular contraction determined by measurement of planimetric cell surface area. ETA receptor mRNA and protein expression was assessed by real time RT-PCR and western blotting, respectively. RESULTS: Exogenous endothelin-1 (Et-1) evoked rises in [Ca2+]i and contraction in RMPs were found to be mediated entirely through ETA receptor (ETAR) activation. Both peak and plateau phases of the Et-1 induced [Ca2+]i response and contraction were impaired in RMPs propagated on AGE modified BM. ETAR mRNA expression remained unchanged in RMPs exposed to native or AGE-BM, but protein expression for ETAR (66 kDa) was lower in the AGE exposed cells. CONCLUSIONS: These results suggest that substrate derived AGE crosslinks can influence RMP physiology by mechanisms which include disruption of ETA receptor signalling. AGE modification of vascular BMs may contribute to the retinal hemodynamic abnormalities observed during diabetes.
Resumo:
AIMS/HYPOTHESIS: Premature death of retinal pericytes is a pathophysiological hallmark of diabetic retinopathy. Among the mechanisms proposed for pericyte death is exposure to AGE, which accumulate during diabetes. The current study used an in vitro model, whereby retinal pericytes were exposed to AGE-modified substrate and the mechanisms underlying pericyte death explored. METHODS: Pericytes were isolated from bovine retinal capillaries and propagated on AGE-modified basement membrane (BM) extract or non-modified native BM. The extent of AGE modification was analysed. Proliferative responses of retinal pericytes propagated on AGE-modified BM were investigated using a 5-bromo-2-deoxy-uridine-based assay. The effect of extrinsically added platelet-derived growth factor (PDGF) isoforms on these proliferative responses was also analysed alongside mRNA expression of the PDGF receptors. Apoptotic death of retinal pericytes grown on AGE-modified BM was investigated using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling labelling, mitochondrial membrane depolarisation and by morphological assessment. We also measured both the ability of PDGF to reverse Akt dephosphorylation that was mediated by AGE-modified BM, and increased pericyte apoptosis. RESULTS: Retinal pericytes exposed to AGE-modified BM showed reduced proliferative responses in comparison to controls (p
Resumo:
The modern stereologic method of vertical sections was applied to the retina as a means of generating unbiased estimates of three-dimensional structure. The method is illustrated with real data on the volume and surface area of the capillary basement membrane from the central retina of the rat. Novel methods of estimating the volume of retina sampled and of creating accurate vertical sections are described. The advantages of using stereologic methods to generate quantitative information on the three-dimensional structure of the retina are discussed and compared to those of previous quantitative methods that provide data on two-dimensional structure only.
Resumo:
PURPOSE: The authors investigated the receptor-mediated endocytosis (RME) and intracellular trafficking of insulin and low-density lipoprotein (LDL) in cultured retinal vascular endothelial cells (RVECs). METHODS: Low-density lipoprotein and insulin were conjugated to 10 nm colloidal gold, and these ligands were added to cultured bovine RVECs for 20 minutes at 4 degrees C. The cultures were then warmed to 37 degrees C and fixed after incubation times between 30 seconds and 1 hour. Control cells were incubated with unconjugated gold colloid at times and concentrations similar to those of the ligands. Additional control cells were exposed to several concentrations of anti-insulin receptor antibody or a saturating solution of unconjugated insulin before incubation with gold insulin. RESULTS: Using transmission electron microscopy, insulin gold and LDL gold were both observed at various stages of RME. Insulin-gold particles were first seen to bind to the apical plasma membrane (PM) before clustering in clathrin-coated pits and internalization in coated vesicles. Gold was later visualized in uncoated cytoplasmic vesicles, corresponding to early endosomes and multivesicular bodies (MVBs) or late endosomes. In several instances, localized regions of the limiting membrane of the MVBs appeared coated, a feature of endosomal membranes not previously described. After RME at the apical PM and passage through the endosomal system, the greater part of both insulin- and LDL-gold conjugates was seen to accumulate in large lysosome-like compartments. However, a small but significant proportion of the internalized ligands was transcytosed and released as discrete membrane-associated quanta at the basal cell surface. The uptake of LDL gold was greatly increased in highly vacuolated, late-passage RVECs. In controls, anti-insulin receptor antibody and excess unconjugated insulin caused up to 89% inhibition in gold-insulin binding and internalization. CONCLUSION: These results illustrate the internalization and intracellular trafficking by RVECs of insulin and LDL through highly efficient RME, and they provide evidence for at least two possible fates for the endocytosed ligands. This study outlines a route by which vital macromolecules may cross the inner blood-retinal barrier.
Resumo:
The effect of the highly vasoactive peptide endothelin 1 (ET1) was tested on bovine retinal microvascular pericytes propagated in vitro. Specific binding of 125I-ET1 to retinal pericytes was documented by autoradiography. ET1 caused contraction of pericytes at a concentration of 0.1 nM which was accompanied by increases in inositol phosphates. Exposure of pericytes to 10 nM ET1 resulted in the aggregation and realignment of muscle-specific actins into bundles which were oriented parallel to the long axis of the cell, and ET1 was also mitogenic to pericytes in the presence of low levels of fetal calf serum. These observations suggest that ET1 may play an important role in endothelial cell-pericyte interactions within the microvasculature of the retina and that it may be involved in the autoregulation of retinal blood flow.
Resumo:
Cell loss and regeneration were investigated and compared in the retinal microvasculature of age- and sex-matched normal and streptozotocin diabetic rats. Selective pericyte loss in the diabetic rat was characterized by changes in the pericyte to endothelial cell ratio in retinal capillaries isolated for microscopy by the trypsin digest technique. A comparison of 3- and 9-month-old normal rats showed no significant change in the pericyte to endothelial cell ratio (1:2.7). In diabetic animals the ratio was reduced to 1:4.03, which was statistically significant (P less than .001). Premitotic retinal vascular cells in normal and diabetic rats were labelled with tritiated thymidine and the labelling indices calculated from cell counts of trypsin digest preparations. Methyl H3 thymidine was infused continuously over an eight-day period using osmotic mini pumps. The labelling index of endothelial cells (0.33%) in normal rats increased to 0.91% in diabetic animals (P less than .05). The labelling index of pericyte cells in normal animals (0.16%) did not increase significantly (P greater than .05) in diabetic animals (0.19%). A special stain was used to exclude labelled polymorphonuclear leukocytes from the cell counts.
Resumo:
We induced choroidal neovascularization in the rhesus monkey by impoverishing the blood supply to the inner retina and producing defects in Bruch's membrane by photocoagulation. Fourteen of 46 eyes undergoing photocoagulation developed neovascular fronds which were identified and categorized by histopathologic examination and fluorescein angiography. All new vessels gained access to the retina through defects in Bruch's membrane at the site of photocoagulation marks. In eight eyes the new vessels remained localized to the immediate vicinity of photocoagulation marks. In four eyes neovascular fronds infiltrated the subretinal space for distances up to 6 disk diameters from the point of entry into the retina. In the two eyes choroidovitreal neovascular complexes developed but rapidly regressed shortly after gaining the vitreous cavity. Fluorescein angiography demonstrated that all neovascular fronds were grossly incompetent to dye but that formed feeding channels had some degree of integrity. Light microscopic studies showed the proliferating networks to be composed of capillaries with well-formed basement membranes and more mature vessels with the basic structure of choroidal arteries and veins.