932 resultados para urban and regional planning education
Resumo:
The changing development and population sprawl in major cities, especially those located in high rainfall areas, has resulted in the need to review and re-assess potential flood impacts in these cities. In many cases these new flood lines and flood maps have placed residential property that was previously considered to be flood free to now be considered to be potentially flood liable. Previous research based in Sydney and the UK has identified the fact that residential property that has been subject to flooding has a decreased price and higher investment risk than flood free property in the same location. These studies have also shown that the greatest impact on residential property subject to flooding is just following a flood event. In June 2009, Brisbane City Council released revised flood maps for the Greater Brisbane region and these maps have identified areas that have not previously been considered flood liable. This paper will analyse the sale performance of flood liable streets in the main flood areas of Brisbane over the period January 1990 through to June 2009, to determine the variation in price for these flood liable areas to the residential property immediately adjoining them. The average sale price will be tracked on both a geographic location and socio-economic basis.
Resumo:
Sustainable infrastructure demands that declared principles of sustainability are enacted in the processes of its implementation. However, a problem arises if the concept of sustainability is not thoroughly scrutinised in the planning process. The public interest could be undermined when the rhetoric of sustainability is used to substantiate a proposed plan. This chapter analyses the manifestation of sustainable development in the Boggo Road Busway Plan in Brisbane, Australia against the sustainability agenda set in the South East Queensland Regional and Transport Plans. Although the construction of the Busway was intended to improve public transport access in the region, its implementation drew significant environmental concerns. Local community groups contested the ‘sustainability’ concept deployed in Queensland’s infrastructure planning. Their challenges resulted in important concessions in the delivery of the Busway plan. This case demonstrates that principles of sustainable infrastructure should be measurable and that local communities be better informed in order to fulfil the public interest in regional planning.
Resumo:
At the turn of the millennium, the Earth’s human population has reached unprecedented levels and its natural resources are being pushed to the limit. Thus, cities are focused on sustainable development and they have begun to develop new strategies for improving the built environment. Sustainable development provides the best outcomes for the human and natural environments by improving the quality of life that protects and balances the ecological, social and economic values. This brings us to the main point: to build a sustainable built environment, cities need to redesign many of their technologies and planning policies within the context of ecological principles. As an environmental sustainability index model, ASSURE is developed to investigate the present environmental situation of an urban area by assessing the impacts of development pressure on natural resources. It is an innovative approach to provide the resilience and function of urban ecosystems secure against the environmental degradation for now and the future. This paper aims to underline the importance of the model (ASSURE) in preserving biodiversity and natural ecosystems in the built environment and investigate its role in delivering long-term urban planning policies.
Resumo:
The privatization of major Australian airports in the late 1990s unleashed an unprecedented development wave as corporate lessees implemented ambitious business plans. While planning and environmental regulations governing on-airport development were significantly enhanced, there has been national disquiet about a governance regime that remains under the auspices of the federal government and is not effectively integrated into state and local decision-making machinery. Tensions in major airport regions have been exacerbated by the building of highly conspicuous non-aeronautical developments approved with no determining input by local decision-makers as well as the growing pressures on off-airport locations for aviation-related development. This paper canvasses this context and overviews the evolving structure of planning controls for Australia’s privatized federal airports. A range of issues surfacing through the National Aviation Policy Review process in 2008–2009 is described.
Resumo:
Despite the general evolution and broadening of the scope of the concept of infrastructure in many other sectors, the energy sector has maintained the same narrow boundaries for over 80 years. Energy infrastructure is still generally restricted in meaning to the transmission and distribution networks of electricity and, to some extent, gas. This is especially true in the urban development context. This early 20th century system is struggling to meet community expectations that the industry itself created and fostered for many decades. The relentless growth in demand and changing political, economic and environmental challenges require a shift from the traditional ‘predict and provide’ approach to infrastructure which is no longer economically or environmentally viable. Market deregulation and a raft of demand and supply side management strategies have failed to curb society’s addiction to the commodity of electricity. None of these responses has addressed the fundamental problem. This chapter presents an argument for the need for a new paradigm. Going beyond peripheral energy efficiency measures and the substitution of fossil fuels with renewables, it outlines a new approach to the provision of energy services in the context of 21st century urban environments.
Resumo:
Introduction - The planning for healthy cities faces significant challenges due to lack of effective information, systems and a framework to organise that information. Such a framework is critical in order to make accessible and informed decisions for planning healthy cities. The challenges for planning healthy cities have been magnified by the rise of the healthy cities movement, as a result of which, there have been more frequent calls for localised, collaborative and knowledge-based decisions. Some studies have suggested that the use of a ‘knowledge-based’ approach to planning will enhance the accuracy and quality decision-making by improving the availability of data and information for health service planners and may also lead to increased collaboration between stakeholders and the community. A knowledge-based or evidence-based approach to decision-making can provide an ‘out-of-the-box’ thinking through the use of technology during decision-making processes. Minimal research has been conducted in this area to date, especially in terms of evaluating the impact of adopting knowledge-based approach on stakeholders, policy-makers and decision-makers within health planning initiatives. Purpose – The purpose of the paper is to present an integrated method that has been developed to facilitate a knowledge-based decision-making process to assist health planning Methodology – Specifically, the paper describes the participatory process that has been adopted to develop an online Geographic Information System (GIS)-based Decision Support System (DSS) for health planners. Value – Conceptually, it is an application of Healthy Cities and Knowledge Cities approaches which are linked together. Specifically, it is a unique settings-based initiative designed to plan for and improve the health capacity of Logan-Beaudesert area, Australia. This setting-based initiative is named as the Logan-Beaudesert Health Coalition (LBHC). Practical implications - The paper outlines the application of a knowledge-based approach to the development of a healthy city. Also, it focuses on the need for widespread use of this approach as a tool for enhancing community-based health coalition decision making processes.
Resumo:
Presentation about research projects that build understanding of urban design and interactions and plan for future opportunities. What do we need to model?
Resumo:
This paper discusses the areawide Dynamic ROad traffic NoisE (DRONE) simulator, and its implementation as a tool for noise abatement policy evaluation. DRONE involves integrating a road traffic noise estimation model with a traffic simulator to estimate road traffic noise in urban networks. An integrated traffic simulation-noise estimation model provides an interface for direct input of traffic flow properties from simulation model to noise estimation model that in turn estimates the noise on a spatial and temporal scale. The output from DRONE is linked with a geographical information system for visual representation of noise levels in the form of noise contour maps.
Resumo:
This paper discusses the role of advance techniques for monitoring urban growth and change for sustainable development of urban environment. It also presents results of a case study involving satellite data for land use/land cover classification of Lucknow city using IRS-1C multi-spectral features. Two classification algorithms have been used in the study. Experiments were conducted to see the level of improvement in digital classification of urban environment using Artificial Neural Network (ANN) technique.
Resumo:
This paper investigates the Cooroy Mill community precinct (Sunshine Coast, Queensland), as a case study, seeking to understand the way local dynamics interplay and work with the community strengths to build a governance model of best fit. As we move to an age of ubiquitous computing and creative economies, the definition of public place and its governance take on new dimensions, which – while often utilizing models of the past – will need to acknowledge and change to the direction of the future. This paper considers a newly developed community precinct that has been built on three key principles: to foster creative expression with new media, to establish a knowledge economy in a regional area, and to subscribe to principles of community engagement. The study involved qualitative interviews with key stakeholders and a review of common practice models of governance along a spectrum from community control to state control. The paper concludes with a call for governance structures that are locally situated and tailored, inclusive, engaging, dynamic and flexible in order to build community capacity, encourage creativity, and build knowledge economies within emerging digital media cityscapes.
Resumo:
This workshop explores innovative approaches to understanding and cultivating sustainable food culture in urban environments via human-computer-interaction (HCI) design and ubiquitous technologies. We perceive the city as an intersecting network of people, place, and technology in constant transformation. Our 2009 OZCHI workshop, Hungry 24/7? HCI Design for Sustainable Food Culture, opened a new space for discussion on this intersection amongst researchers and practitioners from diverse backgrounds including academia, government, industry, and non-for-profit organisations. Building on the past success, this new instalment of the workshop series takes a more refined view on mobile human-food interaction and the role of interactive media in engaging citizens to cultivate more sustainable everyday human-food interactions on the go. Interactive media in this sense is distributed, pervasive, and embedded in the city as a network. The workshop addresses environmental, health, and social domains of sustainability by bringing together insights across disciplines to discuss conceptual and design approaches in orchestrating mobility and interaction of people and food in the city as a network of people, place, technology, and food.
Resumo:
Predicting safety on roadways is standard practice for road safety professionals and has a corresponding extensive literature. The majority of safety prediction models are estimated using roadway segment and intersection (microscale) data, while more recently efforts have been undertaken to predict safety at the planning level (macroscale). Safety prediction models typically include roadway, operations, and exposure variables—factors known to affect safety in fundamental ways. Environmental variables, in particular variables attempting to capture the effect of rain on road safety, are difficult to obtain and have rarely been considered. In the few cases weather variables have been included, historical averages rather than actual weather conditions during which crashes are observed have been used. Without the inclusion of weather related variables researchers have had difficulty explaining regional differences in the safety performance of various entities (e.g. intersections, road segments, highways, etc.) As part of the NCHRP 8-44 research effort, researchers developed PLANSAFE, or planning level safety prediction models. These models make use of socio-economic, demographic, and roadway variables for predicting planning level safety. Accounting for regional differences - similar to the experience for microscale safety models - has been problematic during the development of planning level safety prediction models. More specifically, without weather related variables there is an insufficient set of variables for explaining safety differences across regions and states. Furthermore, omitted variable bias resulting from excluding these important variables may adversely impact the coefficients of included variables, thus contributing to difficulty in model interpretation and accuracy. This paper summarizes the results of an effort to include weather related variables, particularly various measures of rainfall, into accident frequency prediction and the prediction of the frequency of fatal and/or injury degree of severity crash models. The purpose of the study was to determine whether these variables do in fact improve overall goodness of fit of the models, whether these variables may explain some or all of observed regional differences, and identifying the estimated effects of rainfall on safety. The models are based on Traffic Analysis Zone level datasets from Michigan, and Pima and Maricopa Counties in Arizona. Numerous rain-related variables were found to be statistically significant, selected rain related variables improved the overall goodness of fit, and inclusion of these variables reduced the portion of the model explained by the constant in the base models without weather variables. Rain tends to diminish safety, as expected, in fairly complex ways, depending on rain frequency and intensity.
Resumo:
At least two important transportation planning activities rely on planning-level crash prediction models. One is motivated by the Transportation Equity Act for the 21st Century, which requires departments of transportation and metropolitan planning organizations to consider safety explicitly in the transportation planning process. The second could arise from a need for state agencies to establish incentive programs to reduce injuries and save lives. Both applications require a forecast of safety for a future period. Planning-level crash prediction models for the Tucson, Arizona, metropolitan region are presented to demonstrate the feasibility of such models. Data were separated into fatal, injury, and property-damage crashes. To accommodate overdispersion in the data, negative binomial regression models were applied. To accommodate the simultaneity of fatality and injury crash outcomes, simultaneous estimation of the models was conducted. All models produce crash forecasts at the traffic analysis zone level. Statistically significant (p-values < 0.05) and theoretically meaningful variables for the fatal crash model included population density, persons 17 years old or younger as a percentage of the total population, and intersection density. Significant variables for the injury and property-damage crash models were population density, number of employees, intersections density, percentage of miles of principal arterial, percentage of miles of minor arterials, and percentage of miles of urban collectors. Among several conclusions it is suggested that planning-level safety models are feasible and may play a role in future planning activities. However, caution must be exercised with such models.
Resumo:
In recent years the development and use of crash prediction models for roadway safety analyses have received substantial attention. These models, also known as safety performance functions (SPFs), relate the expected crash frequency of roadway elements (intersections, road segments, on-ramps) to traffic volumes and other geometric and operational characteristics. A commonly practiced approach for applying intersection SPFs is to assume that crash types occur in fixed proportions (e.g., rear-end crashes make up 20% of crashes, angle crashes 35%, and so forth) and then apply these fixed proportions to crash totals to estimate crash frequencies by type. As demonstrated in this paper, such a practice makes questionable assumptions and results in considerable error in estimating crash proportions. Through the use of rudimentary SPFs based solely on the annual average daily traffic (AADT) of major and minor roads, the homogeneity-in-proportions assumption is shown not to hold across AADT, because crash proportions vary as a function of both major and minor road AADT. For example, with minor road AADT of 400 vehicles per day, the proportion of intersecting-direction crashes decreases from about 50% with 2,000 major road AADT to about 15% with 82,000 AADT. Same-direction crashes increase from about 15% to 55% for the same comparison. The homogeneity-in-proportions assumption should be abandoned, and crash type models should be used to predict crash frequency by crash type. SPFs that use additional geometric variables would only exacerbate the problem quantified here. Comparison of models for different crash types using additional geometric variables remains the subject of future research.