876 resultados para tucson, cloud, tuple, java, sistemi distribuiti, cloudify
Resumo:
We propose a physical mechanism for the triggering of starbursts in interacting spiral galaxies by shock compression of the pre-existing disk giant molecular clouds (GMCs). We show that as a disk GMC tumbles into the central region of a galaxy following a galactic tidal encounter, it undergoes a radiative shock compression by the pre-existing high pressure of the central molecular intercloud medium. The shocked outer shell of a GMC becomes gravitationally unstable, which results in a burst of star formation in the initially stable GMC. In the case of colliding galaxies with physical overlap such as Arp 244, the cloud compression is shown to occur due to the hot, high-pressure remnant gas resulting from the collisions of atomic hydrogen gas clouds from the two galaxies. The resulting values of infrared luminosity agree with observations. The main mode of triggered star formation is via clusters of stars, thus we can naturally explain the formation of young, luminous star clusters observed in starburst galaxies.
Resumo:
It is now clearly understood that atmospheric aerosols have a significant impact on climate due to their important role in modifying the incoming solar and outgoing infrared radiation. The question of whether aerosol cools (negative forcing) or warms (positive forcing) the planet depends on the relative dominance of absorbing aerosols. Recent investigations over the tropical Indian Ocean have shown that, irrespective of the comparatively small percentage contribution in optical depth (similar to11%), soot has an important role in the overall radiative forcing. However, when the amount of absorbing aerosols such as soot are significant, aerosol optical depth and chemical composition are not the only determinants of aerosol climate effects, but the altitude of the aerosol layer and the altitude and type of clouds are also important. In this paper, the aerosol forcing in the presence of clouds and the effect of different surface types (ocean, soil, vegetation, and different combinations of soil and vegetation) are examined based on model simulations, demonstrating that aerosol forcing changes sign from negative (cooling) to positive (warming) when reflection from below (either due to land or clouds) is high.
Resumo:
Just-in-Time (JIT) compilers for Java can be augmented by making use of runtime profile information to produce better quality code and hence achieve higher performance. In a JIT compilation environment, the profile information obtained can be readily exploited in the same run to aid recompilation and optimization of frequently executed (hot) methods. This paper discusses a low overhead path profiling scheme for dynamically profiling AT produced native code. The profile information is used in recompilation during a subsequent invocation of the hot method. During recompilation tree regions along the hot paths are enlarged and instruction scheduling at the superblock level is performed. We have used the open source LaTTe AT compiler framework for our implementation. Our results on a SPARC platform for SPEC JVM98 benchmarks indicate that (i) there is a significant reduction in the number of tree regions along the hot paths, and (ii) profile aided recompilation in LaTTe achieves performance comparable to that of adaptive LaTTe in spite of retranslation and profiling overheads.
Resumo:
The Java Memory Model (JMM) provides a semantics of Java multithreading for any implementation platform. The JMM is defined in a declarative fashion with an allowed program execution being defined in terms of existence of "commit sequences" (roughly, the order in which actions in the execution are committed). In this work, we develop OpMM, an operational under-approximation of the JMM. The immediate motivation of this work lies in integrating a formal specification of the JMM with software model checkers. We show how our operational memory model description can be integrated into a Java Path Finder (JPF) style model checker for Java programs.
Resumo:
Clouds are the largest source of uncertainty in climate science, and remain a weak link in modeling tropical circulation. A major challenge is to establish connections between particulate microphysics and macroscale turbulent dynamics in cumulus clouds. Here we address the issue from the latter standpoint. First we show how to create bench-scale flows that reproduce a variety of cumulus-cloud forms (including two genera and three species), and track complete cloud life cycles-e.g., from a ``cauliflower'' congestus to a dissipating fractus. The flow model used is a transient plume with volumetric diabatic heating scaled dynamically to simulate latent-heat release from phase changes in clouds. Laser-based diagnostics of steady plumes reveal Riehl-Malkus type protected cores. They also show that, unlike the constancy implied by early self-similar plume models, the diabatic heating raises the Taylor entrainment coefficient just above cloud base, depressing it at higher levels. This behavior is consistent with cloud-dilution rates found in recent numerical simulations of steady deep convection, and with aircraft-based observations of homogeneous mixing in clouds. In-cloud diabatic heating thus emerges as the key driver in cloud development, and could well provide a major link between microphysics and cloud- scale dynamics.
Resumo:
The precipitation by Relaxed Arakawa-Schubert cumulus parameterization in a General Circulation Model (GCM) is sensitive to the choice of relaxation parameter or specified cloud adjustment time scale. In the present study, we examine sensitivity of simulated precipitation to the choice of cloud adjustment time scale (tau(adj)) over different parts of the tropics using National Center for Environmental Prediction (NCEP) Seasonal Forecast Model (SFM) during June-September. The results show that a single specified value of tau(adj) performs best only over a particular region and different values are preferred over different parts of the world. To find a relation between tau(adj) and cloud depth (convective activity) we choose six regions over the tropics. Based on the observed relation between outgoing long-wave radiation and tau(adj), we propose a linear cloud-type dependent relaxation parameter to be used in the model. The simulations over most parts of the tropics show improved results due to this newly formulated cloud-type dependent relaxation parameter.
Resumo:
For a fixed positive integer k, a k-tuple total dominating set of a graph G = (V. E) is a subset T D-k of V such that every vertex in V is adjacent to at least k vertices of T Dk. In minimum k-tuple total dominating set problem (MIN k-TUPLE TOTAL DOM SET), it is required to find a k-tuple total dominating set of minimum cardinality and DECIDE MIN k-TUPLE TOTAL DOM SET is the decision version of MIN k-TUPLE TOTAL DOM SET problem. In this paper, we show that DECIDE MIN k-TUPLE TOTAL DOM SET is NP-complete for split graphs, doubly chordal graphs and bipartite graphs. For chordal bipartite graphs, we show that MIN k-TUPLE TOTAL DOM SET can be solved in polynomial time. We also propose some hardness results and approximation algorithms for MIN k-TUPLE TOTAL DOM SET problem. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Precise specification of the vertical distribution of cloud optical properties is important to reduce the uncertainty in quantifying the radiative impacts of clouds. The new global observations of vertical profiles of clouds from the CloudSat mission provide opportunities to describe cloud structures and to improve parameterization of clouds in the weather and climate prediction models. In this study, four years (2007-2010) of observations of vertical structure of clouds from the CloudSat cloud profiling radar have been used to document the mean vertical structure of clouds associated with the Indian summer monsoon (ISM) and its intra-seasonal variability. Active and break monsoon spells associated with the intra-seasonal variability of ISM have been identified by an objective criterion. For the present analysis, we considered CloudSat derived column integrated cloud liquid and ice water, and vertically profiles of cloud liquid and ice water content. Over the South Asian monsoon region, deep convective clouds with large vertical extent (up to 14 km) and large values of cloud water and ice content are observed over the north Bay of Bengal. Deep clouds with large ice water content are also observed over north Arabian Sea and adjoining northwest India, along the west coast of India and the south equatorial Indian Ocean. The active monsoon spells are characterized by enhanced deep convection over the Bay of Bengal, west coast of India and northeast Arabian Sea and suppressed convection over the equatorial Indian Ocean. Over the Bay of Bengal, cloud liquid water content and ice water content is enhanced by similar to 90 and similar to 200 % respectively during the active spells. An interesting feature associated with the active spell is the vertical tilting structure of positive CLWC and CIWC anomalies over the Arabian Sea and the Bay of Bengal, which suggests a pre-conditioning process for the northward propagation of the boreal summer intra-seasonal variability. It is also observed that during the break spells, clouds are not completely suppressed over central India. Instead, clouds with smaller vertical extent (3-5 km) are observed due to the presence of a heat low type of circulation. The present results will be useful for validating the vertical structure of clouds in weather and climate prediction models.
Resumo:
There are many applications such as software for processing customer records in telecom, patient records in hospitals, email processing software accessing a single email in a mailbox etc. which require to access a single record in a database consisting of millions of records. A basic feature of these applications is that they need to access data sets which are very large but simple. Cloud computing provides computing requirements for these kinds of new generation of applications involving very large data sets which cannot possibly be handled efficiently using traditional computing infrastructure. In this paper, we describe storage services provided by three well-known cloud service providers and give a comparison of their features with a view to characterize storage requirements of very large data sets as examples and we hope that it would act as a catalyst for the design of storage services for very large data set requirements in future. We also give a brief overview of other kinds of storage that have come up in the recent past for cloud computing.
Resumo:
The presence of software bloat in large flexible software systems can hurt energy efficiency. However, identifying and mitigating bloat is fairly effort intensive. To enable such efforts to be directed where there is a substantial potential for energy savings, we investigate the impact of bloat on power consumption under different situations. We conduct the first systematic experimental study of the joint power-performance implications of bloat across a range of hardware and software configurations on modern server platforms. The study employs controlled experiments to expose different effects of a common type of Java runtime bloat, excess temporary objects, in the context of the SPECPower_ssj2008 workload. We introduce the notion of equi-performance power reduction to characterize the impact, in addition to peak power comparisons. The results show a wide variation in energy savings from bloat reduction across these configurations. Energy efficiency benefits at peak performance tend to be most pronounced when bloat affects a performance bottleneck and non-bloated resources have low energy-proportionality. Equi-performance power savings are highest when bloated resources have a high degree of energy proportionality. We develop an analytical model that establishes a general relation between resource pressure caused by bloat and its energy efficiency impact under different conditions of resource bottlenecks and energy proportionality. Applying the model to different "what-if" scenarios, we predict the impact of bloat reduction and corroborate these predictions with empirical observations. Our work shows that the prevalent software-only view of bloat is inadequate for assessing its power-performance impact and instead provides a full systems approach for reasoning about its implications.