999 resultados para transition element
Resumo:
The transition from marine/brackish waters to freshwater habitats constitutes a severe osmotic and ionic challenge, and successful invasion has demanded the selection of morphological, physiological, biochemical and behavioral adaptations. We evaluated short-term (1 to 12 h exposure) and long-term (5 d acclimation), anisosmotic extracellular (osmolality, [Na(+), Cl(-)]) and long-term isosmotic intracellular osmoregulatory capability in Palaemon northropi, a neotropical intertidal shrimp. F northropi survives well and osmo- and ionoregulates strongly during short- and long-term exposure to 5-45 parts per thousand salinity, consistent with its rocky tide pool habitat subject to cyclic salinity fluctuations, Muscle total free amino acid (FAA) concentrations decreased by 63% in shrimp acclimated to 5%. salinity, revealing a role in hypoosmotic cell volume regulation; this decrease is mainly a consequence of diminished glycine, arginine and proline. Total FAA contributed 31% to muscle intracellular osmolality at 20 parts per thousand, an isosmotic salinity, and decreased to 13% after acclimation to 5 parts per thousand. Gill and nerve tissue FAA concentrations remained unaltered. These tissue-specific responses reflect efficient anisosmotic and anisoionic extracellular regulatory mechanisms, and reveal the dependence of muscle tissue on intracellular osmotic effectors. FAA concentration is higher in P. northropi than in diadromous and hololimnetic palaemonids, confirming muscle FAA concentration as a good parameter to evaluate the degree of adaptation to dilute media. The osmoregulatory capability of P. northropi may reflect the potential physiological capacity of ancestral marine palaemonids to penetrate into dilute media, and reveals the importance of evaluating osmoregulatory processes in endeavors to comprehend the invasion of dilute media by ancestral marine crustaceans.
Resumo:
The genetic constitution of Afro-derived Brazilian populations is barely studied. To improve that knowledge, we investigated the AluYAP element and five Y-chromosome STRs (DYS19, DYS390, DYS391, DYS392, and DYS393) to estimate ethnic male contribution in the constitution of four Brazilian quilombos remnants: Mocambo, Rio das Ras, Kalunga, and Riacho de Sacutiaba. Results indicated significant differences among communities, corroborating historical information about the Brazilian settlement. We concluded that besides African contribution, there was a great European participation in the constitution of these four populations and that observed haplotype variability could be explained by gene flow to quilombos remnants and mutational events in microsatellites (STRs). Am. J. Hum. Biol. 21:354-356, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
This study aimed to develop a plate to treat fractures of the mandibular body in dogs and to validate the project using finite elements and biomechanical essays. Mandible prototypes were produced with 10 oblique ventrorostral fractures (favorable) and 10 oblique ventrocaudal fractures (unfavorable). Three groups were established for each fracture type. Osteosynthesis with a pure titanium plate of double-arch geometry and blocked monocortical screws offree angulanon were used. The mechanical resistance of the prototype with unfavorable fracture was lower than that of the fcworable fracture. In both fractures, the deflection increased and the relative stiffness decreased proportionally to the diminishing screw number The finite element analysis validated this plate study, since the maximum tension concentration observed on the plate was lower than the resistance limit tension admitted by the titanium. In conclusion, the double-arch geometry plate fixed with blocked monocortical screws has sufficient resistance to stabilize oblique,fractures, without compromising mandibular dental or neurovascular structures. J Vet Dent 24 (7); 212 - 221, 2010
Resumo:
Objective. To evaluate the biaxial and short-beam uniaxial strength tests applied to resin composites based upon their Weibull parameters, fractographic features and stress distribution. Methods. Disk- (15 mm x 1 mm) and beam-shaped specimens (10 mm x 2 mm x 1 mm) of three commercial composites (Concept/Vigodent, CA; Heliomolar/Ivoclar-Vivadent, HE; Z250/3M ESPE, FZ) were prepared. After 48h dry storage at 37 degrees C, disks and beams were submitted to piston-on-three-balls (BI) and three-point bending (UNI) tests, respectively. Data were analyzed by Weibull statistics. Fractured surfaces were observed under stereomicroscope and scanning electron microscope. Maximum principal stress (sigma(1)) distribution was determined by finite element analysis (FEA). Maximum sigma(1-BI) and sigma(1-UNI) were compared to FZ strengths calculated by applying the average failure loads to the analytical equations (sigma(a-BI) and sigma(a-UNI)). Results. For BI, characteristic strengths were: 169.9a (FZ), 122.4b (CA) and 104.8c (HE), and for UNI were: 160.3a (FZ), 98.2b (CA) and 91.6b (HE). Weibull moduli ( m) were similar within the same test. CA and HE presented statistically higher m for BI. Surface pores ( BI) and edge flaws ( UNI) were the most frequent fracture origins. sigma(1-BI) was 14% lower than sigma(a-BI.) sigma(1-UNI) was 43% higher than sigma(a-UNI). Significance. Compared to the short-beam uniaxial test, the biaxial test detected more differences among composites and displayed less data scattering for two of the tested materials. Also, biaxial strength was closer to the material`s strength estimated by FEA. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Upper premolars restored with endodontic posts present a high incidence of vertical root fracture (VRF). Two hypotheses were tested: (1) the smaller mesiodistal diameter favors stress concentration in the root and (2) the lack of an effective bonding between root and post increases the risk of VRF. Using finite element analysis, maximum principal stress was analyzed in 3-dimensional intact upper second premolar models. From the intact models, new models were built including endodontic posts of different elastic modulus (E = 37 or E = 200 GPa) with circular or oval cross-section, either bonded or nonbonded to circular or oval cross-section root canals. The first hypothesis was partially confirmed because the conditions involving nonbonded, low-modulus posts showed lower tensile stress for oval canals compared to circular canals. Tensile stress peaks for the nonbonded models were approximately three times higher than for the bonded or intact models, therefore confirming the second hypothesis. (J Endod 2009;35:117-120)
Resumo:
Stress distributions in torsion and wire-loop shear tests were compared using three-dimensional (3-D) linear-elastic finite element method, in an attempt to predict the ideal conditions for testing adhesive strength of dental resin composites to dentin. The torsion test presented lower variability in stress concentration at the adhesive interface with changes in the proportion adhesive thickness/resin composite diameter, as well as lower variability with changes in the resin composite elastic modulus. Moreover, the torsion test eliminated variability from changes in loading distance, and reduced the cohesive fracture tendency in the dentin. The torsion test seems to be more appropriate than wire-loop shear test for testing the resin composite-tooth interface strength. (c) Koninklijke Brill NV, Leiden, 2009
Resumo:
Background: Understanding how clinical variables affect stress distribution facilitates optimal prosthesis design and fabrication and may lead to a decrease in mechanical failures as well as improve implant longevity. Purpose: In this study, the many clinical variations present in implant-supported prosthesis were analyzed by 3-D finite element method. Materials and Method: A geometrical model representing the anterior segment of a human mandible treated with 5 implants supporting a framework was created to perform the tests. The variables introduced in the computer model were cantilever length, elastic modulus of cancellous bone, abutment length, implant length, and framework alloy (AgPd or CoCr). The computer was programmed with physical properties of the materials as derived from the literature, and a 100N vertical load was used to simulate the occlusal force. Images with the fringes of stress were obtained and the maximum stress at each site was plotted in graphs for comparison. Results: Stresses clustered at the elements closest to the loading point. Stress increase was found to be proportional to the increase in cantilever length and inversely proportional to the increase in the elastic modulus of cancellous bone. Increasing the abutment length resulted in a decrease of stress on implants and framework. Stress decrease could not be demonstrated with implants longer than 13 mm. A stiffer framework may allow better stress distribution. Conclusion: The relative physical properties of the many materials involved in an implant-supported prosthesis system affect the way stresses are distributed.
Resumo:
The relationship between the ordering characteristic of the pyrochlore structure type and that characteristic of the defect fluorite structure type (immediately on either side of two phase regions separating the two structure types) in a range of rare eath sesquioxide stabilized cubic zirconias is investigated via electron diffraction and imaging. Systematic structural change as a function of composition and relative size of the constituent metal ions is highlighted and a multi-q to single-q = 1/2 [111]* model proposed for the observed pyrochlore to defect fluorite phase transition. Strain introduced into the close-packed {111} metal ion planes of the defect fluorite average structure by the local cation and oxygen vacancy distribution is pointed to as the likely origin of the observed behavior. (C) 2001 Academic Press
Resumo:
Purpose: The objective of this study was to evaluate the stress on the cortical bone around single body dental implants supporting mandibular complete fixed denture with rigid (Neopronto System-Neodent) or semirigid splinting system (Barra Distal System-Neodent). Methods and Materials: Stress levels on several system components were analyzed through finite element analysis. Focusing on stress concentration at cortical bone around single body dental implants supporting mandibular complete fixed dentures with rigid ( Neopronto System-Neodent) or semirigid splinting system ( Barra Distal System-Neodent), after axial and oblique occlusal loading simulation, applied in the last cantilever element. Results: The results showed that semirigid implant splinting generated lower von Mises stress in the cortical bone under axial loading. Rigid implant splinting generated higher von Mises stress in the cortical bone under oblique loading. Conclusion: It was concluded that the use of a semirigid system for rehabilitation of edentulous mandibles by means of immediate implant-supported fixed complete denture is recommended, because it reduces stress concentration in the cortical bone. As a consequence, bone level is better preserved, and implant survival is improved. Nevertheless, for both situations the cortical bone integrity was protected, because the maximum stress level findings were lower than those pointed in the literature as being harmful. The maximum stress limit for cortical bone (167 MPa) represents the threshold between plastic and elastic state for a given material. Because any force is applied to an object, and there is no deformation, we can conclude that the elastic threshold was not surpassed, keeping its structural integrity. If the force is higher than the plastic threshold, the object will suffer permanent deformation. In cortical bone, this represents the beginning of bone resorption and/or remodeling processes, which, according to our simulated loading, would not occur. ( Implant Dent 2010; 19:39-49)