955 resultados para traffic psychology
Resumo:
Suburbanisation has been internationally a major phenomenon in the last decades. Suburb-to-suburb routes are nowadays the most widespread road journeys; and this resulted in an increment of distances travelled, particularly on faster suburban highways. The design of highways tends to over-simplify the driving task and this can result in decreased alertness. Driving behaviour is consequently impaired and drivers are then more likely to be involved in road crashes. This is particularly dangerous on highways where the speed limit is high. While effective countermeasures to this decrement in alertness do not currently exist, the development of in-vehicle sensors opens avenues for monitoring driving behaviour in real-time. The aim of this study is to evaluate in real-time the level of alertness of the driver through surrogate measures that can be collected from in-vehicle sensors. Slow EEG activity is used as a reference to evaluate driver's alertness. Data are collected in a driving simulator instrumented with an eye tracking system, a heart rate monitor and an electrodermal activity device (N=25 participants). Four different types of highways (driving scenario of 40 minutes each) are implemented through the variation of the road design (amount of curves and hills) and the roadside environment (amount of buildings and traffic). We show with Neural Networks that reduced alertness can be detected in real-time with an accuracy of 92% using lane positioning, steering wheel movement, head rotation, blink frequency, heart rate variability and skin conductance level. Such results show that it is possible to assess driver's alertness with surrogate measures. Such methodology could be used to warn drivers of their alertness level through the development of an in-vehicle device monitoring in real-time drivers' behaviour on highways, and therefore it could result in improved road safety.
Resumo:
The effectiveness of ‘the lockout policy’ integrated within a broader police enforcement strategy to reduce alcohol-related harm, in and around late-night licensed premises, in major drinking precincts was examined. First response operational police (n= 280) recorded all alcohol and non alcohol-related incidents they attended in and around late-night liquor trading premises. A before and after study design was used, with police completing modified activity logs prior to and following the introduction of the lockout policy in two policing regions: Gold Coast (n = 12,801 incidents); Brisbane City/Fortitude Valley (n = 9,117 incidents). Qualitative information from key stakeholders (e.g., Police, Security Staff & Politicians n = 20) was also obtained. The number of alcohol-related offences requiring police attention was significantly reduced in some policing areas and for some types of offences (e.g., sex offences, street disturbances, traffic incidents. However, there was no variation for a number of other offence categories (e.g., assault). Interviews with licensees revealed that although all were initially opposed to the lockout policy, most perceived benefits from its introduction. This study was the first of its kind to comprehensively examine the impact of a lockout policy and provides supportive evidence for the effectiveness of the lockout policy as integrating positively with police enforcement to enhance public safety in some areas in and around late-night liquor trading premises.
Resumo:
In an Australian context, the term hooning refers to risky driving behaviours such as illegal street racing and speed trials, as well as behaviours that involve unnecessary noise and smoke, which include burn outs, donuts, fish tails, drifting and other skids. Hooning receives considerable negative media attention in Australia, and since the 1990s all Australian jurisdictions have implemented vehicle impoundment programs to deal with the problem. However, there is limited objective evidence of the road safety risk associated with hooning behaviours. Attempts to estimate the risk associated with hooning are limited by official data collection and storage practices, and the willingness of drivers to admit to their illegal behaviour in the event of a crash. International evidence suggests that illegal street racing is associated with only a small proportion of fatal crashes; however, hooning in an Australian context encompasses a broader group of driving behaviours than illegal street racing alone, and it is possible that the road safety risks will differ with these behaviours. There is evidence from North American jurisdictions that vehicle impoundment programs are effective for managing drink driving offenders, and drivers who continue to drive while disqualified or suspended both during and post-impoundment. However, these programs used impoundment periods of 30 – 180 days (depending on the number of previous offences). In Queensland the penalty for a first hooning offence is 48 hours, while the vehicle can be impounded for up to 3 months for a second offence, or permanently for a third or subsequent offence within three years. Thus, it remains unclear whether similar effects will be seen for hooning offenders in Australia, as no evaluations of vehicle impoundment programs for hooning have been published. To address these research needs, this program of research consisted of three complementary studies designed to: (1) investigate the road safety implications of hooning behaviours in terms of the risks associated with the specific behaviours, and the drivers who engage in these behaviours; and (2) assess the effectiveness of current approaches to dealing with the problem; in order to (3) inform policy and practice in the area of hooning behaviour. Study 1 involved qualitative (N = 22) and quantitative (N = 290) research with drivers who admitted engaging in hooning behaviours on Queensland roads. Study 2 involved a systematic profile of a large sample of drivers (N = 834) detected and punished for a hooning offence in Queensland, and a comparison of their driving and crash histories with a randomly sampled group of Queensland drivers with the same gender and age distribution. Study 3 examined the post-impoundment driving behaviour of hooning offenders (N = 610) to examine the effects of vehicle impoundment on driving behaviour. The theoretical framework used to guide the research incorporated expanded deterrence theory, social learning theory, and driver thrill-seeking perspectives. This framework was used to explore factors contributing to hooning behaviours, and interpret the results of the aspects of the research designed to explore the effectiveness of vehicle impoundment as a countermeasure for hooning. Variables from each of the perspectives were related to hooning measures, highlighting the complexity of the behaviour. This research found that the road safety risk of hooning behaviours appears low, as only a small proportion of the hooning offences in Study 2 resulted in a crash. However, Study 1 found that hooning-related crashes are less likely to be reported than general crashes, particularly when they do not involve an injury, and that higher frequencies of hooning behaviours are associated with hooning-related crash involvement. Further, approximately one fifth of drivers in Study 1 reported being involved in a hooning-related crash in the previous three years, which is comparable to general crash involvement among the general population of drivers in Queensland. Given that hooning-related crashes represented only a sub-set of crash involvement for this sample, this suggests that there are risks associated with hooning behaviour that are not apparent in official data sources. Further, the main evidence of risk associated with the behaviour appears to relate to the hooning driver, as Study 2 found that these drivers are likely to engage in other risky driving behaviours (particularly speeding and driving vehicles with defects or illegal modifications), and have significantly more traffic infringements, licence sanctions and crashes than drivers of a similar (i.e., young) age. Self-report data from the Study 1 samples indicated that Queensland’s vehicle impoundment and forfeiture laws are perceived as severe, and that many drivers have reduced their hooning behaviour to avoid detection. However, it appears that it is more common for drivers to have simply changed the location of their hooning behaviour to avoid detection. When the post-impoundment driving behaviour of the sample of hooning offenders was compared to their pre-impoundment behaviour to examine the effectiveness of vehicle impoundment in Study 3, it was found that there was a small but significant reduction in hooning offences, and also for other traffic infringements generally. As Study 3 was observational, it was not possible to control for extraneous variables, and is, therefore, possible that some of this reduction was due to other factors, such as a reduction in driving exposure, the effects of changes to Queensland’s Graduated Driver Licensing scheme that were implemented during the study period and affected many drivers in the offender sample due to their age, or the extension of vehicle impoundment to other types of offences in Queensland during the post-impoundment period. However, there was a protective effect observed, in that hooning offenders did not show the increase in traffic infringements in the post period that occurred within the comparison sample. This suggests that there may be some effect of vehicle impoundment on the driving behaviour of hooning offenders, and that this effect is not limited to their hooning driving behaviour. To be more confident in these results, it is necessary to measure driving exposure during the post periods to control for issues such as offenders being denied access to vehicles. While it was not the primary aim of this program of research to compare the utility of different theoretical perspectives, the findings of the research have a number of theoretical implications. For example, it was found that only some of the deterrence variables were related to hooning behaviours, and sometimes in the opposite direction to predictions. Further, social learning theory variables had stronger associations with hooning. These results suggest that a purely legal approach to understanding hooning behaviours, and designing and implementing countermeasures designed to reduce these behaviours, are unlikely to be successful. This research also had implications for policy and practice, and a number of recommendations were made throughout the thesis to improve the quality of relevant data collection practices. Some of these changes have already occurred since the expansion of the application of vehicle impoundment programs to other offences in Queensland. It was also recommended that the operational and resource costs of these laws should be compared to the road safety benefits in ongoing evaluations of effectiveness to ensure that finite traffic policing resources are allocated in a way that produces maximum road safety benefits. However, as the evidence of risk associated with the hooning driver is more compelling than that associated with hooning behaviour, it was argued that the hooning driver may represent the better target for intervention. Suggestions for future research include ongoing evaluations of the effectiveness of vehicle impoundment programs for hooning and other high-risk driving behaviours, and the exploration of additional potential targets for intervention to reduce hooning behaviour. As the body of knowledge regarding the factors contributing to hooning increases, along with the identification of potential barriers to the effectiveness of current countermeasures, recommendations for changes in policy and practice for hooning behaviours can be made.
Resumo:
- Road safety implications of unlicensed driving - Present results from three studies examining: the crash involvement of unlicensed drivers; the impact of licence disqualification on offending; characteristics of unlicensed driving offenders - Countermeasure implications - Discussion of high-risk groups and innovative countermeasure options
Resumo:
Ethernet is a key component of the standards used for digital process buses in transmission substations, namely IEC 61850 and IEEE Std 1588-2008 (PTPv2). These standards use multicast Ethernet frames that can be processed by more than one device. This presents some significant engineering challenges when implementing a sampled value process bus due to the large amount of network traffic. A system of network traffic segregation using a combination of Virtual LAN (VLAN) and multicast address filtering using managed Ethernet switches is presented. This includes VLAN prioritisation of traffic classes such as the IEC 61850 protocols GOOSE, MMS and sampled values (SV), and other protocols like PTPv2. Multicast address filtering is used to limit SV/GOOSE traffic to defined subsets of subscribers. A method to map substation plant reference designations to multicast address ranges is proposed that enables engineers to determine the type of traffic and location of the source by inspecting the destination address. This method and the proposed filtering strategy simplifies future changes to the prioritisation of network traffic, and is applicable to both process bus and station bus applications.
Resumo:
Car Following models have a critical role in all microscopic traffic simulation models. Current microscopic simulation models are unable to mimic the unsafe behaviour of drivers as most are based on presumptions about the safe behaviour of drivers. Gipps model is a widely used car following model embedded in different micro-simulation models. This paper examines the Gipps car following model to investigate ways of improving the model for safety studies application. The paper puts forward some suggestions to modify the Gipps model to improve its capabilities to simulate unsafe vehicle movements (vehicles with safety indicators below critical thresholds). The result of the paper is one step forward to facilitate assessing and predicting safety at motorways using microscopic simulation. NGSIM as a rich source of vehicle trajectory data for a motorway is used to extract its relatively risky events. Short following headways and Time To Collision are used to assess critical safety event within traffic flow. The result shows that the modified proposed car following to a certain extent predicts the unsafe trajectories with smaller error values than the generic Gipps model.
Resumo:
A letter in response to an article by David Rojas-Rueda, Audrey de Nazelle, Marko Tainio, Mark J Nieuwenhuijsen, The health risks and benefits of cycling in urban environments compared with car use: health impact assessment study. BMJ 2011;343:doi:10.1136/bmj.d4521 (Published 4 August 2011) This paper sets out to compare the health benefits of the Bicing scheme (Barcelona's public bicycle share scheme) with possible risks associated with increased bicycle riding. The key variables used by the researchers include physical activity, exposure to air pollution and road traffic injury. The authors rightly identify that although traffic congestion is often a major motivator behind the establishment of public bicycle share schemes (PBSS), the health benefits may well be the largest single benefit of such schemes. Certainly PBSS appear to be one of the most effective methods of increasing the number of bicycle trips across a population, providing additional transport options and improving awareness of the possibilities bicycles offer urban transport systems. Overall, the paper is a useful addition to the literature, in that it has attempted to assess the health benefits of a large scale PBSS and weighed these against potential risks related to cyclists exposure to air pollution and road traffic injuries. Unfortunately a fundamentally flawed assumption related to the proportion of Bicing trips replacing car journeys invalidates the results of this paper. A future paper with up to date data would create a significant contribution to this emerging area within the field of sustainable transport.
Resumo:
Eco-driving is an initiative driving behavior which aims to reduce fuel consumption and emissions from automobiles. Recently, it has attracted increasing interests and has been adopted by many drivers in Australia. Although many of the studies have revealed considerable benefits in terms of fuel consumption and emissions after utilising eco-driving, most of the literature investigated eco-driving effects on individual driver but not traffic flow. The driving behavior of eco-drivers will potentially affect other drivers and thereby affects the entire traffic flow. To comprehensively assess and understand how effectively eco-driving can perform, therefore, measurement on traffic flow is necessary. In this paper, we proposed and demonstrated an evaluation method based on a microscopic traffic simulator (Aimsun). We focus on one particular eco-driving style which involves moderate and smooth acceleration. We evaluated both traffic performance (travel time) and environmental performance (fuel consumption and CO2 emission) at traffic intersection level in a simple simulation model. The before-and-after comparisons indicated potentially negative impacts when using eco-driving, which highlighted the necessity to carefully evaluate and improve eco-driving before wide promotion and implementation.
Resumo:
Objective: Young drivers are at greatest risk of injury or death from a car crash in the first six months of independent driving. In Queensland, the graduated driver licensing (GDL) program was extensively modified in July 2007 in order to reduce this risk. Increased mileage and car ownership have been found to play a role in risky driving, offences and crashes; however GDL programs typically do not consider these variables. In addition, young novice drivers’ experiences of punishment avoidance have not previously been examined. The paper explores the mileage (duration and distance), car ownership and punishment avoidance behaviour of young newly-licensed intermediate (Provisional) drivers and their relationship with risky driving, crashes and offences. Methods: Drivers (n = 1032) aged 17-19 years recruited from across Queensland for longitudinal research completed Survey 1 exploring pre-licence and Learner experiences and sociodemographic characteristics. Survey 2 explored the same variables with a subset of these drivers (n = 341) after they had completed their first six months of independent driving. Results: Most young drivers in Survey 2 reported owning a vehicle and paying attention to Police presence. Drivers who had their own car reported significantly greater mileage and more risky driving. Novices who drove more kilometres, spent more hours each week driving, or avoided actual and anticipated Police presence were more likely to report risky driving. These drivers were also more likely to report being detected by Police for a driving-related offence. The media, parents, friends and other drivers play a pivotal role in informing novices of on-road Police enforcement operations. Conclusions: GDL programs should incorporate education for the parent and novice driver regarding the increased risks associated with greater driving particularly where the novices own a vehicle. Parents should be encouraged to delay exclusive access to a vehicle for the novice driver. Parents should also consider whether their young novice will deliberately avoid Police if they tell them their location. This may reinforce not only the risky behaviour but also the young novice’s beliefs that their parents condone this behaviour.
Resumo:
The aim of this study is to assess the potential use of Bluetooth data for traffic monitoring of arterial road networks. Bluetooth data provides the direct measurement of travel time between pairs of scanners, and intensive research has been reported on this topic. Bluetooth data includes “Duration” data, which represents the time spent by Bluetooth devices to pass through the detection range of Bluetooth scanners. If the scanners are located at signalised intersections, this Duration can be related to intersection performance, and hence represents valuable information for traffic monitoring. However the use of Duration has been ignored in previous analyses. In this study, the Duration data as well as travel time data is analysed to capture the traffic condition of a main arterial route in Brisbane. The data consists of one week of Bluetooth data provided by Brisbane City Council. As well, micro simulation analysis is conducted to further investigate the properties of Duration. The results reveal characteristics of Duration, and address future research needs to utilise this valuable data source.
Resumo:
Traffic Simulation models tend to have their own data input and output formats. In an effort to standardise the input for traffic simulations, we introduce in this paper a set of data marts that aim to serve as a common interface between the necessaary data, stored in dedicated databases, and the swoftware packages, that require the input in a certain format. The data marts are developed based on real world objects (e.g. roads, traffic lights, controllers) rather than abstract models and hence contain all necessary information that can be transformed by the importing software package to their needs. The paper contains a full description of the data marts for network coding, simulation results, and scenario management, which have been discussed with industry partners to ensure sustainability.
Resumo:
Vehicle emitted particles are of significant concern based on their potential to influence local air quality and human health. Transport microenvironments usually contain higher vehicle emission concentrations compared to other environments, and people spend a substantial amount of time in these microenvironments when commuting. Currently there is limited scientific knowledge on particle concentration, passenger exposure and the distribution of vehicle emissions in transport microenvironments, partially due to the fact that the instrumentation required to conduct such measurements is not available in many research centres. Information on passenger waiting time and location in such microenvironments has also not been investigated, which makes it difficult to evaluate a passenger’s spatial-temporal exposure to vehicle emissions. Furthermore, current emission models are incapable of rapidly predicting emission distribution, given the complexity of variations in emission rates that result from changes in driving conditions, as well as the time spent in driving condition within the transport microenvironment. In order to address these scientific gaps in knowledge, this work conducted, for the first time, a comprehensive statistical analysis of experimental data, along with multi-parameter assessment, exposure evaluation and comparison, and emission model development and application, in relation to traffic interrupted transport microenvironments. The work aimed to quantify and characterise particle emissions and human exposure in the transport microenvironments, with bus stations and a pedestrian crossing identified as suitable research locations representing a typical transport microenvironment. Firstly, two bus stations in Brisbane, Australia, with different designs, were selected to conduct measurements of particle number size distributions, particle number and PM2.5 concentrations during two different seasons. Simultaneous traffic and meteorological parameters were also monitored, aiming to quantify particle characteristics and investigate the impact of bus flow rate, station design and meteorological conditions on particle characteristics at stations. The results showed higher concentrations of PN20-30 at the station situated in an open area (open station), which is likely to be attributed to the lower average daily temperature compared to the station with a canyon structure (canyon station). During precipitation events, it was found that particle number concentration in the size range 25-250 nm decreased greatly, and that the average daily reduction in PM2.5 concentration on rainy days compared to fine days was 44.2 % and 22.6 % at the open and canyon station, respectively. The effect of ambient wind speeds on particle number concentrations was also examined, and no relationship was found between particle number concentration and wind speed for the entire measurement period. In addition, 33 pairs of average half-hourly PN7-3000 concentrations were calculated and identified at the two stations, during the same time of a day, and with the same ambient wind speeds and precipitation conditions. The results of a paired t-test showed that the average half-hourly PN7-3000 concentrations at the two stations were not significantly different at the 5% confidence level (t = 0.06, p = 0.96), which indicates that the different station designs were not a crucial factor for influencing PN7-3000 concentrations. A further assessment of passenger exposure to bus emissions on a platform was evaluated at another bus station in Brisbane, Australia. The sampling was conducted over seven weekdays to investigate spatial-temporal variations in size-fractionated particle number and PM2.5 concentrations, as well as human exposure on the platform. For the whole day, the average PN13-800 concentration was 1.3 x 104 and 1.0 x 104 particle/cm3 at the centre and end of the platform, respectively, of which PN50-100 accounted for the largest proportion to the total count. Furthermore, the contribution of exposure at the bus station to the overall daily exposure was assessed using two assumed scenarios of a school student and an office worker. It was found that, although the daily time fraction (the percentage of time spend at a location in a whole day) at the station was only 0.8 %, the daily exposure fractions (the percentage of exposures at a location accounting for the daily exposure) at the station were 2.7% and 2.8 % for exposure to PN13-800 and 2.7% and 3.5% for exposure to PM2.5 for the school student and the office worker, respectively. A new parameter, “exposure intensity” (the ratio of daily exposure fraction and the daily time fraction) was also defined and calculated at the station, with values of 3.3 and 3.4 for exposure to PN13-880, and 3.3 and 4.2 for exposure to PM2.5, for the school student and the office worker, respectively. In order to quantify the enhanced emissions at critical locations and define the emission distribution in further dispersion models for traffic interrupted transport microenvironments, a composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. This model does not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bidirectional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. The CLSE model was also applied at a signalled pedestrian crossing, in order to assess increased particle number emissions from motor vehicles when forced to stop and accelerate from rest. The CLSE model was used to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses including 1 car travelling in 1 direction (/1 direction), 14 cars / 1 direction, 1 bus / 1 direction, 28 cars / 2 directions, 24 cars and 2 buses / 2 directions, and 20 cars and 4 buses / 2 directions. It was found that the total emissions produced during stopping on a red signal were significantly higher than when the traffic moved at a steady speed. Overall, total emissions due to the interruption of the traffic increased by a factor of 13, 11, 45, 11, 41, and 43 for the above 6 cases, respectively. In summary, this PhD thesis presents the results of a comprehensive study on particle number and mass concentration, together with particle size distribution, in a bus station transport microenvironment, influenced by bus flow rates, meteorological conditions and station design. Passenger spatial-temporal exposure to bus emitted particles was also assessed according to waiting time and location along the platform, as well as the contribution of exposure at the bus station to overall daily exposure. Due to the complexity of the interrupted traffic flow within the transport microenvironments, a unique CLSE model was also developed, which is capable of quantifying emission levels at critical locations within the transport microenvironment, for the purpose of evaluating passenger exposure and conducting simulations of vehicle emission dispersion. The application of the CLSE model at a pedestrian crossing also proved its applicability and simplicity for use in a real-world transport microenvironment.
Resumo:
The paper explores the role and focus of drink driving rehabilitation programs. It is particularly concerned with whether programs that specifically focus on reducing driving after drinking also have a positive effect on clients’ levels of drinking. A sample of volunteering clients was recruited while they were participating in the Australian “Under the Limit” program and they were followed up at least three months post completion. Response rates were very low and the sample is assumed to reflect the views and outcomes of persons who felt positive about the program. Clients reported large and meaningful reductions in their drinking and in their drink driving. They also reported important moves towards action and change in their drinking habits. The findings deserve to be followed up given the fact that drink driving programs are generally of much shorter duration than alcohol focussed interventions. There is a need for further research in this area and for developing more effective recruitment strategies.