879 resultados para time varying parameter model
Influence of magnetically-induced E-fields on cardiac electric activity during MRI: A modeling study
Resumo:
In modern magnetic resonance imaging (MRI), patients are exposed to strong, time-varying gradient magnetic fields that may be able to induce electric fields (E-fields)/currents in tissues approaching the level of physiological significance. In this work we present theoretical investigations into induced E-fields in the thorax, and evaluate their potential influence on cardiac electric activity under the assumption that the sites of maximum E-field correspond to the myocardial stimulation threshold (an abnormal circumstance). Whole-body cylindrical and planar gradient coils were included in the model. The calculations of the induced fields are based on an efficient, quasi-static, finite-difference scheme and an anatomically realistic, whole-body model. The potential for cardiac stimulation was evaluated using an electrical model of the heart. Twelve-lead electrocardiogram (ECG) signals were simulated and inspected for arrhythmias caused by the applied fields for both healthy and diseased hearts. The simulations show that the shape of the thorax and the conductive paths significantly influence induced E-fields. In healthy patients, these fields are not sufficient to elicit serious arrhythmias with the use of contemporary gradient sets. However, raising the strength and number of repeated switching episodes of gradients, as is certainly possible in local chest gradient sets, could expose patients to increased risk. For patients with cardiac disease, the risk factors are elevated. By the use of this model, the sensitivity of cardiac pathologies, such as abnormal conductive pathways, to the induced fields generated by an MRI sequence can be investigated. (C) 2003 Wiley-Liss, Inc.
Resumo:
Esta dissertação propõe um algoritmo do Controlador Preditivo Generalizado (GPC) com horizonte de controle igual a um para ser aplicado em plantas industriais com modelos variantes no tempo, simples o su ficiente para ser implementado em Controlador Lógico Programável (PLC). A solução explícita do controlador é obtida em função dos parâmetros do modelo e dos parâmetros de sintonia do GPC (horizonte nal de predição hp e o fator de supressão do sinal de controle ), além das entradas e saídas presentes e passadas. A sintonia do fator de supressão e do horizonte de previsão GPC é feita através do lugar das raízes da equação característica do sistema em malha fechada, sempre que os parâmetros do modelo da planta industrial (estável ou instável em malha aberta) forem modificados.
Resumo:
Recent literature has proved that many classical pricing models (Black and Scholes, Heston, etc.) and risk measures (V aR, CV aR, etc.) may lead to “pathological meaningless situations”, since traders can build sequences of portfolios whose risk leveltends to −infinity and whose expected return tends to +infinity, i.e., (risk = −infinity, return = +infinity). Such a sequence of strategies may be called “good deal”. This paper focuses on the risk measures V aR and CV aR and analyzes this caveat in a discrete time complete pricing model. Under quite general conditions the explicit expression of a good deal is given, and its sensitivity with respect to some possible measurement errors is provided too. We point out that a critical property is the absence of short sales. In such a case we first construct a “shadow riskless asset” (SRA) without short sales and then the good deal is given by borrowing more and more money so as to invest in the SRA. It is also shown that the SRA is interested by itself, even if there are short selling restrictions.
Resumo:
This paper studies the evolution of the default risk premia for European firms during the years surrounding the recent credit crisis. We employ the information embedded in Credit Default Swaps (CDS) and Moody’s KMV EDF default probabilities to analyze the common factors driving this risk premia. The risk premium is characterized in several directions: Firstly, we perform a panel data analysis to capture the relationship between CDS spreads and actual default probabilities. Secondly, we employ the intensity framework of Jarrow et al. (2005) in order to measure the theoretical effect of risk premium on expected bond returns. Thirdly, we carry out a dynamic panel data to identify the macroeconomic sources of risk premium. Finally, a vector autoregressive model analyzes which proportion of the co-movement is attributable to financial or macro variables. Our estimations report coefficients for risk premium substantially higher than previously referred for US firms and a time varying behavior. A dominant factor explains around 60% of the common movements in risk premia. Additionally, empirical evidence suggests a public-to-private risk transfer between the sovereign CDS spreads and corporate risk premia.
Resumo:
This article addresses the problem of obtaining reduced complexity models of multi-reach water delivery canals that are suitable for robust and linear parameter varying (LPV) control design. In the first stage, by applying a method known from the literature, a finite dimensional rational transfer function of a priori defined order is obtained for each canal reach by linearizing the Saint-Venant equations. Then, by using block diagrams algebra, these different models are combined with linearized gate models in order to obtain the overall canal model. In what concerns the control design objectives, this approach has the advantages of providing a model with prescribed order and to quantify the high frequency uncertainty due to model approximation. A case study with a 3-reach canal is presented, and the resulting model is compared with experimental data. © 2014 IEEE.
Resumo:
This article addresses the problem of obtaining reduced complexity models of multi-reach water delivery canals that are suitable for robust and linear parameter varying (LPV) control design. In the first stage, by applying a method known from the literature, a finite dimensional rational transfer function of a priori defined order is obtained for each canal reach by linearizing the Saint-Venant equations. Then, by using block diagrams algebra, these different models are combined with linearized gate models in order to obtain the overall canal model. In what concerns the control design objectives, this approach has the advantages of providing a model with prescribed order and to quantify the high frequency uncertainty due to model approximation. A case study with a 3-reach canal is presented, and the resulting model is compared with experimental data. © 2014 IEEE.
Resumo:
Coevolution between two antagonistic species has been widely studied theoretically for both ecologically- and genetically-driven Red Queen dynamics. A typical outcome of these systems is an oscillatory behavior causing an endless series of one species adaptation and others counter-adaptation. More recently, a mathematical model combining a three-species food chain system with an adaptive dynamics approach revealed genetically driven chaotic Red Queen coevolution. In the present article, we analyze this mathematical model mainly focusing on the impact of species rates of evolution (mutation rates) in the dynamics. Firstly, we analytically proof the boundedness of the trajectories of the chaotic attractor. The complexity of the coupling between the dynamical variables is quantified using observability indices. By using symbolic dynamics theory, we quantify the complexity of genetically driven Red Queen chaos computing the topological entropy of existing one-dimensional iterated maps using Markov partitions. Co-dimensional two bifurcation diagrams are also built from the period ordering of the orbits of the maps. Then, we study the predictability of the Red Queen chaos, found in narrow regions of mutation rates. To extend the previous analyses, we also computed the likeliness of finding chaos in a given region of the parameter space varying other model parameters simultaneously. Such analyses allowed us to compute a mean predictability measure for the system in the explored region of the parameter space. We found that genetically driven Red Queen chaos, although being restricted to small regions of the analyzed parameter space, might be highly unpredictable.
Resumo:
In today’s healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time–frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient’s response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.
Critical Velocity obtained using Simplified Models of the Railway Track: Viability and Applicability
Resumo:
Increased demands on the capacity of the railway network gave rise to new issues related to the dynamic response of railway tracks subjected to moving vehicles. Thus, it becomes important to evaluate the applicability of traditionally used simplified models which have a closed form solution. Regarding simplified models, transversal vibrations of a beam on a visco-elastic foundation subjected to a moving load are considered. Governing equations are obtained by Hamilton’s principle. Shear distortion, rotary inertia and effect of axial force are accounted for. The load is introduced as a time varying force moving at a constant velocity. Transversal vibrations induced by the load are solved by the normal-mode analysis. Reflected waves at the extremities of the full beam are avoided by introduction of semi-infinite elements. Firstly, the critical velocity obtained from this model is compared with results of an undamped Euler- Bernoulli formulation with zero axial force. Secondly, a finite element model in ABAQUS is examined. The new contribution lies in the introduction of semi- infinite elements and in the first step to a systematic comparison, which have not been published so fa
Resumo:
In today’s healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time–frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient’s response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.
Resumo:
Thesis submitted in partial fulfillment of the requirements for the Degree of Doctor of Statistics and Information Management
Resumo:
This paper offers a new approach to estimating time-varying covariance matrices in the framework of the diagonal-vech version of the multivariate GARCH(1,1) model. Our method is numerically feasible for large-scale problems, produces positive semidefinite conditional covariance matrices, and does not impose unrealistic a priori restrictions. We provide an empirical application in the context of international stock markets, comparing the nev^ estimator with a number of existing ones.
Resumo:
This paper studies the effects of monetary policy on mutual fund risk taking using a sample of Portuguese fixed-income mutual funds in the 2000-2012 period. Firstly I estimate time-varying measures of risk exposure (betas) for the individual funds, for the benchmark portfolio, as well as for a representative equally-weighted portfolio, through 24-month rolling regressions of a two-factor model with two systematic risk factors: interest rate risk (TERM) and default risk (DEF). Next, in the second phase, using the estimated betas, I try to understand what portion of the risk exposure is in excess of the benchmark (active risk) and how it relates to monetary policy proxies (one-month rate, Taylor residual, real rate and first principal component of a cross-section of government yields and rates). Using this methodology, I provide empirical evidence that Portuguese fixed-income mutual funds respond to accommodative monetary policy by significantly increasing exposure, in excess of their benchmarks, to default risk rate and slightly to interest risk rate as well. I also find that the increase in funds’ risk exposure to gain a boost in return (search-for-yield) is more pronounced following the 2007-2009 global financial crisis, indicating that the current historic low interest rates may incentivize excessive risk taking. My results suggest that monetary policy affects the risk appetite of non-bank financial intermediaries.
Resumo:
NIPE - WP 01/ 2016
Resumo:
Préface My thesis consists of three essays where I consider equilibrium asset prices and investment strategies when the market is likely to experience crashes and possibly sharp windfalls. Although each part is written as an independent and self contained article, the papers share a common behavioral approach in representing investors preferences regarding to extremal returns. Investors utility is defined over their relative performance rather than over their final wealth position, a method first proposed by Markowitz (1952b) and by Kahneman and Tversky (1979), that I extend to incorporate preferences over extremal outcomes. With the failure of the traditional expected utility models in reproducing the observed stylized features of financial markets, the Prospect theory of Kahneman and Tversky (1979) offered the first significant alternative to the expected utility paradigm by considering that people focus on gains and losses rather than on final positions. Under this setting, Barberis, Huang, and Santos (2000) and McQueen and Vorkink (2004) were able to build a representative agent optimization model which solution reproduced some of the observed risk premium and excess volatility. The research in behavioral finance is relatively new and its potential still to explore. The three essays composing my thesis propose to use and extend this setting to study investors behavior and investment strategies in a market where crashes and sharp windfalls are likely to occur. In the first paper, the preferences of a representative agent, relative to time varying positive and negative extremal thresholds are modelled and estimated. A new utility function that conciliates between expected utility maximization and tail-related performance measures is proposed. The model estimation shows that the representative agent preferences reveals a significant level of crash aversion and lottery-pursuit. Assuming a single risky asset economy the proposed specification is able to reproduce some of the distributional features exhibited by financial return series. The second part proposes and illustrates a preference-based asset allocation model taking into account investors crash aversion. Using the skewed t distribution, optimal allocations are characterized as a resulting tradeoff between the distribution four moments. The specification highlights the preference for odd moments and the aversion for even moments. Qualitatively, optimal portfolios are analyzed in terms of firm characteristics and in a setting that reflects real-time asset allocation, a systematic over-performance is obtained compared to the aggregate stock market. Finally, in my third article, dynamic option-based investment strategies are derived and illustrated for investors presenting downside loss aversion. The problem is solved in closed form when the stock market exhibits stochastic volatility and jumps. The specification of downside loss averse utility functions allows corresponding terminal wealth profiles to be expressed as options on the stochastic discount factor contingent on the loss aversion level. Therefore dynamic strategies reduce to the replicating portfolio using exchange traded and well selected options, and the risky stock.