947 resultados para tidal turbine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During R/V Meteor-cruise no. 30 4 moorings with 17 current meters were placed on the continental slope of Sierra Leone at depths between 81 and 1058 meters. The observation period started on March 8, 1973, 16.55 hours GMT and lasted 19 days for moorings M30_068MOOR, M30_069MOOR, M30_070MOOR on the slope and 9 days for M30_067MOOR on the shelf. One current meter recorded at location M30_067MOOR for 22 days. Hydrographic data were collected at 32 stations by means of the "Kieler Multi-Meeressonde". Harmonic analysis is applied to the first 15 days of the time series to determine the M2 and S2 tides. By vertically averaging of the Fourier coefficients the field of motion is separated into its barotropic and its baroclinic component. The expected error generated by white Gaussian noise is estimated. To estimate the influence of the particular vertical distribution of the current meters, the barotropic M2 tide is calculated by ommitting and interchanging time series of different moorings. It is shown that only the data of moorings M30_069MOOR, M30_070MOOR and M30_067MOOR can be used. The results for the barotropic M2 tide agree well with the previous publications of other authors. On the slope at a depth of 1000 m there is a free barotropic wave under the influence of the Coriolis-force propagating along the slope with an amplitude of 3.4 cm S**-1. On the shelf, the maximum current is substantially greater (5.8 cm s**-1) and the direction of propagation is perpendicular to the slope. As for the continental slope a separation into different baroclinic modes using vertical eigenmodes is not reasonable, an interpretation of the total baroclinic wave field is tried by means of the method of characteristis. Assuming the continental slope to generate several linear waves, which superpose, baroclinic tidal ellipses are calculated. The scattering of the direction of the major axes M30_069MOOR is in contrast to M30_070MOOR, where they are bundled within an angle of 60°. This is presumably caused by the different character of the bottom topography in the vicinity of the two moorings. A detailed discussion of M30_069MOOR is renounced since the accuracy of the bathymetric chart is not sufficient to prove any relation between waves and topography. The bundeling of the major axes at M30_070MOOR can be explained by the longslope changes of the slope, which cause an energy transfer from the longslope barotropic component to the downslope baroclinic component. The maximum amplitude is found at a depth of 245 m where it is expected from the characteristics originating at the shelf edge. Because of the dominating barotropic tide high coherence is found between most of the current meters. To show the influence of the baroclinic tidal waves, the effect of the mean current is considered. There are two periods nearly opposite longshore mean current. For 128 hours during each of these periods, starting on March 11, 05.00, and March 21, 08.30, the coherences and energy spectra are calculated. The changes in the slope of the characteristics are found in agreement with the changes of energy and coherence. Because of the short periods of nearly constant mean current, some of the calculated differences of energy and coherence are not statistically significant. For the M2 tide a calculation of the ratios of vertically integrated total baroclinic energy and vertically integrated barotropic kinetic energy is carried out. Taking into account both components (along and perpendicular to the slope) the obtained values are 0.75 and 0.98 at the slope and 0.38 at the shelf. If each component is considered separately, the ratios are 0.39 and 1.16 parallel to the slope and 5.1 and 15.85 for the component perpendicular to it. Taking the energy transfer from the longslope component to the doenslope component into account, a simple model yields an energy-ratio of 2.6. Considering the limited application of the theory to the real conditions, the obtained are in agreement with the values calculated by Sandstroem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A map of the tidal flats of China, Manchuria and Korea depicted in US Army Map Service Series L500, L542 and L552 topographic maps (compiled between 1950 and 1964). The topographic maps were georeferenced against prominent topographical features in L1T processed Landsat imagery and the foreshore flat class was manually delineated. For further information refer to Murray et. al. (2014).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent works (Evelpidou et al., 2012) suggest that the modern tidal notch is disappearing worldwide due sea level rise over the last century. In order to assess this hypothesis, we measured modern tidal notches in several of sites along the Mediterranean coasts. We report observations on tidal notches cut along carbonate coasts from 73 sites from Italy, France, Croatia, Montenegro, Greece, Malta and Spain, plus additional observations carried outside the Mediterranean. At each site, we measured notch width and depth, and we described the characteristics of the biological rim at the base of the notch. We correlated these parameters with wave energy, tide gauge datasets and rock lithology. Our results suggest that, considering 'the development of tidal notches the consequence of midlittoral bioerosion' (as done in Evelpidou et al., 2012) is a simplification that can lead to misleading results, such as stating that notches are disappearing. Important roles in notch formation can be also played by wave action, rate of karst dissolution, salt weathering and wetting and drying cycles. Of course notch formation can be augmented and favoured also by bioerosion which can, in particular cases, be the main process of notch formation and development. Our dataset shows that notches are carved by an ensemble rather than by a single process, both today and in the past, and that it is difficult, if not impossible, to disentangle them and establish which one is prevailing. We therefore show that tidal notches are still forming, challenging the hypothesis that sea level rise has drowned them.