999 resultados para the Everglades


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We estimated trophic position and carbon source for three consumers (Florida gar, Lepisosteus platyrhincus; eastern mosquitofish, Gambusia holbrooki; and riverine grass shrimp, Palaemonetes paludosus) from 20 sites representing gradients of productivity and hydrological disturbance in the southern Florida Everglades, U.S.A. We characterized gross primary productivity at each site using light/dark bottle incubation and stem density of emergent vascular plants. We also documented nutrient availability as total phosphorus (TP) in floc and periphyton, and the density of small fishes. Hydrological disturbance was characterized as the time since a site was last dried and the average number of days per year the sites were inundated for the previous 10 years. Food-web attributes were estimated in both the wet and dry seasons by analysis of δ15N (trophic position) and δ13C (food-web carbon source) from 702 samples of aquatic consumers. An index of carbon source was derived from a two-member mixing model with Seminole ramshorn snails (Planorbella duryi) as a basal grazing consumer and scuds (amphipods Hyallela azteca) as a basal detritivore. Snails yielded carbon isotopic values similar to green algae and diatoms, while carbon values of scuds were similar to bulk periphyton and floc; carbon isotopic values of cyanobacteria were enriched in C13compared to all consumers examined. A carbon source similar to scuds dominated at all but one study site, and though the relative contribution of scud-like and snail-like carbon sources was variable, there was no evidence that these contributions were a function of abiotic factors or season. Gar consistently displayed the highest estimated trophic position of the consumers studied, with mosquitofish feeding at a slightly lower level, and grass shrimp feeding at the lowest level. Trophic position was not correlated with any nutrient or productivity parameter, but did increase for grass shrimp and mosquitofish as the time following droughts increased. Trophic position of Florida gar was positively correlated with emergent plant stem density.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Florida Everglades is a highly diverse socionatural landscape that historically spanned much of the south Florida peninsula. Today, the Florida Everglades is an iconic but highly contested conservation landscape. It is the site of one of the world's largest publicly funded ecological restoration programs, estimated to cost over $8 billion (U.S. GAO 2007), and it is home to over two million acres of federally protected lands, including the Big Cypress National Preserve and Everglades National Park. However, local people's values, practices and histories overlap and often conflict with the global and eco-centric values linked to Everglades environmental conservation efforts, sparking environmental conflict. My dissertation research examined the cultural politics of nature associated with two Everglades conservation and ecological restoration projects: 1) the creation and stewardship of the Big Cypress National Preserve, and 2) the Tamiami Trail project at the northern boundary of Everglades National Park. Using multiple research methods including ethnographic fieldwork, archival research, participant observation, surveys and semi-structured interviews, I documented how these two projects have shaped environmental claims-making strategies to Everglades nature on the part of environmental NGOs, the National Park Service and local white outdoorsmen. In particular, I examined the emergence of an oppositional white identity called the Gladesmen Culture. My findings include the following: 1) just as different forms of nature are historically produced, contingent and power-laden, so too are different claims to Everglades nature; 2) identity politics are an integral dimension of Everglades environmental conflicts; and 3) the Big Cypress region's history and contemporary conflicts are shaped by the broader political economy of development in south Florida. My dissertation concluded that identity politics, class and property relations have played a key, although not always obvious, role in shaping Everglades history and environmental claims-making, and that they continue to influence contemporary Everglades environmental conflicts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this special issue, we report on efforts to reconstruct paleoclimate/paleolimnology of the Florida Everglades, applying a wide range of techniques including sedimentological, micropaleontological and biogeochemical approaches. The papers included here describe results obtained by studies conducted in Everglades National Park and the greater South Florida Everglades by Florida Coastal Everglades Long Term Ecological Research Program (FCE LTER) collaborators. This multi-investigator project contrasts nutrient dynamics in two inland-to-marine transects aligned along separate drainages in southern Florida that differ in their susceptibility to coastal pressures and in volume of freshwater delivery. This effort focuses on the paleoecological aspects of FCE LTER research that address scales of ecosystem transformations driven by climate variability and change and human activities. The central question addressed by this body of work is “How is the shape of the freshwater-to-marine gradient in the Florida coastal Everglades controlled by changes in climate, freshwater inflow (i.e. through human activities), and disturbance (i.e. sea level rise, hurricanes, fire)?”

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A pivotal component of hydrological restoration of the Florida Everglades is the improvement of water conveyance to Everglades National Park by the degradation of the current network of canals, roadways and levees. The Tamiami Trail (L29) road/canal complex represents a major barrier to natural water flows into the park and a variety of modification options for flow improvement are currently being explored, including the installation of spreader swales immediately downstream of culverts conveying water under Tamiami Trail from the L29 canal into Everglades National Park. In this study, we evaluated water column chemistry and wet-season diatom community structure to provide baseline information for use in future monitoring activities related to the proposed Tamiami Trail modifications. Water chemistry showed pronounced fluctuations in response to precipitation and anthropogenically mediated hydrological events. Differences in water quality variables among sites were dampened during periods of inundation, and became more pronounced during periods of low canal stage, suggesting the importance of small-scale mechanisms related to isolation of habitat patches. Diatom assemblages were unexpectedly speciose (127 taxa in 40 samples) compared to typical Everglades assemblages, and spatially heterogeneous in sites associated with concentric areas of dense vegetation immediately downstream of culverts. We also observed significant compositional dissimilarities among transects, indicating that culvert pool and north transect assemblages were substantially influenced by propagule input from the canal and areas to the north, while south transect sites were compositionally similar to typical sawgrass prairie diatom communities. Central transect sites were compositionally intermediate to their north and south counterparts. We propose that the position and spatial extent of this “transitional assemblage” is a sensitive indicator of subtle environmental change related to Tamiami Trail modifications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Florida Bay is more saline than it was historically, and reduced freshwater flows may lead to more phosphorus inputs to the mangrove ecotone from the marine end-member. This is important given plans to restore freshwater flow into eastern Florida Bay. We investigated the relationships between salinity, nutrients, and hydrologic variables in the mangrove ecotone of Taylor Slough. We expected that total phosphorus (TP) would increase with salinity, reflecting a downstream marine source, while total nitrogen (TN) would increase with flow in the mangrove ecotone. Despite expectations of increased flows improving the ecological health of lower Taylor Slough and Florida Bay, total nitrogen (TN) and total phosphorus (TP) dynamics may shift in response to new conditions of flow and salinity as well as organic carbon, N, and P availability. Our results showed that TP concentrations are more discharge-driven while TN is more variable and potentially derived from different sources along the flow path from the freshwater Everglades marshes to Florida Bay. Increased flow of freshwater through Taylor Slough will likely decrease TP concentrations in this historically oligotrophic and P-limited ecosystem. However, more studies along the mangrove ecotone is needed to understand how increased flows will affect nitrogen dynamics relative to phosphorus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vegetation patterns of mangroves in the Florida Coastal Everglades (FCE) result from the interaction of environmental gradients and natural disturbances (i.e., hurricanes), creating an array of distinct riverine and scrub mangroves across the landscape. We investigated how landscape patterns of biomass and total net primary productivity (NPPT), including allocation in above- and below-ground mangrove components, vary inter-annually (2001–2004) across gradients in soil properties and hydroperiod in two distinct FCE basins: Shark River Estuary and Taylor River Slough. We propose that the allocation of belowground biomass and productivity (NPPB) relative to aboveground allocation is greater in regions with P limitation and permanent flooding. Porewater sulfide was significantly higher in Taylor River (1.2 ± 0.3 mM) compared to Shark River (0.1 ± 0.03 mM) indicating the lack of a tidal signature and more permanent flooding in this basin. There was a decrease in soil P density and corresponding increase in soil N:P from the mouth (28) to upstream locations (46–105) in Shark River that was consistent with previous results in this region. Taylor River sites showed the highest P limitation (soil N:P > 60). Average NPPT was double in higher P environments (17.0 ± 1.1 Mg ha−1 yr−1) compared to lower P regions (8.3 ± 0.3 Mg ha−1 yr−1). Root biomass to aboveground wood biomass (BGB:AWB) ratio was 17 times higher in P-limited environments demonstrating the allocation strategies of mangroves under resource limitation. Riverine mangroves allocated most of the NPPT to aboveground (69%) while scrub mangroves showed the highest allocation to belowground (58%). The total production to biomass (P:B) ratios were lower in Shark River sites (0.11 yr−1); whereas in Taylor River sites P:B ratios were higher and more variable (0.13–0.24 yr−1). Our results suggest that the interaction of lower P availability in Taylor River relative to Shark River basin, along with higher sulfide and permanent flooding account for higher allocation of belowground biomass and production, at expenses of aboveground growth and wood biomass. These distinct patterns of carbon partitioning between riverine and scrub mangroves in response to environmental stress support our hypothesis that belowground allocation is a significant contribution to soil carbon storage in forested wetlands across FCE, particularly in P-limited scrub mangroves. Elucidating these biomass strategies will improve analysis of carbon budgets (storage and production) in neotropical mangroves and understanding what conditions lead to net carbon sinks in the tropical coastal zone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We examined interannual variation in soil properties from wetlands occurring in adjacent drainage basins from the southeastern Everglades. Triplicate 10-cm soil cores were collected, homogenized, and analyzed during the wet season 2006–2010 from five freshwater sawgrass wetland marshes and three estuarine mangrove forests. Soil bulk density from the Taylor Slough basin ranged from 0.15 gm-cm−3 to 0.5 gm-cm−3, was higher than from the Panhandle basin every year, and generally increased throughout the study period. Organic matter as a percent loss on ignition ranged from 7 % to 12 % from freshwater marshes and from 13 % to 56 % from estuarine mangroves. Extractable iron in soils was similar among drainage basins and wetland types, typically ranging from 0.6 to 2.0 g Fe kg−1. In contrast, inorganic sulfur was on average over four times higher from estuarine soils relative to freshwater, and was positively correlated with soil organic matter. Finally total soil phosphorus (P) was lower in freshwater soils relative to estuarine soils (84 ± 5 versus 326 ± 32 mg P kg−1). Total P from the freshwater marshes in the Panhandle basin rose throughout the study period from 54.7 ± 8.4 to 107 ± 17 mg P kg−1, a possible outcome of differences in water management between drainage basins.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Comprehensive Everglades Restoration includes plans to restore freshwater delivery to Taylor Slough, a shallow drainage basin in the Southern Everglades, ultimately resulting in increased freshwater flow to the downstream Taylor River estuary. The effect of altered hydrologic regime on the transport dynamics of flocculent, estuarine detritus is not well understood. We utilized a paramagnetic sediment tracer to examine detrital transport in three Taylor River pond/creek pairs during early wet versus late wet transition season estuarine flow conditions. Flux of floc tracer was greatest in the downstream direction during all observations, and was most pronounced during the early wet season, coincident with shallower water depth and faster discharge from northern Taylor River. Floc tracer was more likely to move upriver during the late wet/dry season. We observed a floc tracer transport velocity of approximately 1.74 to 1.78 m/day across both seasonal hydrologic conditions. Tracer dynamics were also surprisingly site-dependent, which may highlight the importance of channel geomorphology in regulating hydrologic and sediment transport conditions. Our data suggest that restoration of surface water delivery to Taylor River will influence downstream loading of detritus material into riverine ponds. These detrital inputs have the potential to enhance ecosystem primary productivity and/or secondary productivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Envekadea metzeltinii sp. nov. is described from periphyton assemblages in the subtropical karstic wetlands of the Florida Everglades, U.S.A. The morphology of the new diatom species is documented by light and scanning electron micrographs and discussed in detail, including comparisons with related species in the genera Envekadea, Caloneis, andNavicula. The new species is characterized by a linear valve outline, a sigmoid raphe course, broad variability in areola shapes and sizes, and two clearly raised axial costae. Apart from the type locality in Florida, the species was observed from similar wetlands in the Yucatan, Mexico. Notes on its ecology and distribution are added. Based on the morphology of the most similar species, Navicula palestinae, the latter is transferred to the genus Envekadea.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Short-hydroperiod Everglades wetlands have been disproportionately affected by reductions in freshwater inflows, land conversion and biotic invasions. Severe hydroperiod reductions in these habitats, including the Rocky Glades, coupled with proximity to canals that act as sources of invasions, may limit their ability to support high levels of aquatic production. We examined whether karst solution holes function as dry-down refuges for fishes, providing a source of marsh colonists upon reflooding, by tracking fish abundance, nonnative composition, and survival in solution holes throughout the dry season. We paired field surveys with an in situ nonnative predation experiment that tested the effects of predation by the recent invader, African jewelfish (Hemichromis letourneuxi) on native fishes. Over the 3 years surveyed, a large number of the solution holes dried before the onset of the wet season, while those retaining water had low survivorship and were dominated by nonnatives. In the experiment, mortality of eastern mosquitofish (Gambusia holbrooki) in the presence of African jewelfish was greater than that associated with deteriorating water quality. Under current water management, findings suggest that solution holes are largely sinks for native fishes, given the high frequency of drydown, extensive period of fish residence, and predation by nonnative fishes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Flocculent material (floc) is an important energy source in wetlands. In the Florida Everglades, floc is present in both freshwater marshes and coastal environments and plays a key role in food webs and nutrient cycling. However, not much is known about its environmental dynamics, in particular its biological sources and bio-reactivity. We analysed floc samples collected from different environments in the Florida Everglades and applied biomarkers and pigment chemotaxonomy to identify spatial and seasonal differences in organic matter sources. An attempt was made to link floc composition with algal and plant productivity. Spatial differences were observed between freshwater marsh and estuarine floc. Freshwater floc receives organic matter inputs from local periphyton mats, as indicated by microbial biomarkers and chlorophyll-a estimates. At the estuarine sites, the floc is dominated by mangrove as well as diatom inputs from the marine end-member. The hydroperiod (duration and depth of inundation) at the freshwater sites influences floc organic matter preservation, where the floc at the short-hydroperiod site is more oxidised likely due to periodic dry-down conditions. Seasonal differences in floc composition were not consistent and the few that were observed are likely linked to the primary productivity of the dominant biomass (periphyton in the freshwater marshes and mangroves in the estuarine zone). Molecular evidence for hydrological transport of floc material from the freshwater marshes to the coastal fringe was also observed. With the on-going restoration of the Florida Everglades, it is important to gain a better understanding of the biogeochemical dynamics of floc, including its sources, transformations and reactivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The landscape structure of emergent wetlands in undeveloped portions of the southeastern coastal Everglades is comprised of two distinct components: scattered forest fragments, or tree islands, surrounded by a low matrix of marsh or shrub-dominated vegetation. Changes in the matrix, including the inland transgression of salt-tolerant mangroves and the recession of sawgrass marshes, have been attributed to the combination of sea level rise and reductions in fresh water supply. In this study we examined concurrent changes in the composition of the region’s tree islands over a period of almost three decades. No trend in species composition toward more salt-tolerant trees was observed anywhere, but species characteristic of freshwater swamps increased in forests in which fresh water supply was augmented. Tree islands in the coastal Everglades appear to be buffered from some of the short term effects of salt water intrusion, due to their ability to build soils above the surface of the surrounding wetlands, thus maintaining mesophytic conditions. However, the apparent resistance of tree islands to changes associated with sea level rise is likely to be a temporary stage, as continued salt water intrusion will eventually overwhelm the forests’ capacity to maintain fresh water in the rooting zone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Within the marl prairie grasslands of the Florida Everglades, USA, the combined effects of fire and flooding usually lead to very significant changes in tree island structure and composition. Depending on fire severity and post-fire hydroperiod, these effects vary spatially and temporally throughout the landscape, creating a patchy post-fire mosaic of tree islands with different successional states. Through the use of the Normalized Difference Vegetation Index (NDVI) and three predictor variables (marsh water table elevation at the time of fire, post-fire hydroperiod, and tree island size), along with logistic regression analysis, we examined the probability of tree island burning and recovering following the Mustang Corner Fire (May to June 2008) in Everglades National Park. Our data show that hydrologic conditions during and after fire, which are under varying degrees of management control, can lead to tree island contraction or loss. More specifically, the elevation of the marsh water table at the time of the fire appears to be the most important parameter determining the severity of fire in marl prairie tree islands. Furthermore, in the post-fire recovery phase, both tree island size and hydroperiod during the first year after the fire played important roles in determining the probability of tree island recovery, contraction, or loss.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Understanding the relationships between hydrology and salinity and plant community structure and production is critical to allow predictions of wetland responses to altered water management, changing precipitation patterns and rising sea-level. We addressed how salinity, water depth, hydroperiod, canal inflows, and local precipitation control marsh macrophyte aboveground net primary production (ANPP) and structure in the coastal ecotone of the southern Everglades. We contrasted responses in two watersheds - Taylor Slough (TS) and C-111 - systems that have and will continue to experience changes in water management. Based on long-term trajectories in plant responses, we found continued evidence of increasing water levels and length of inundation in the C-111 watershed south of the C-111 canal. We also found strong differentiation among sites in upper TS that was dependent on hydrology. Finally, salinity, local precipitation and freshwater discharge from upstream explained over 80 % of the variance in Cladium ANPP at a brackish water site in TS. Moreover, our study showed that, while highly managed, the TS and C-111 watersheds maintain legacies in spatial pattern that would facilitate hydrologic restoration. Based on the trajectories in Cladium and Eleocharis, shifts in plant community structure could occur within 5–10 years of sustained water management change.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Natural dissolved organic matter (DOM) is the major absorber of sunlight in most natural waters and a critical component of carbon cycling in aquatic systems. The combined effect of light absorbance properties and related photo-production of reactive species are essential in determining the reactivity of DOM. Optical properties and in particular excitation–emission matrix fluorescence spectroscopy combined with parallel factor analysis (EEM-PARAFAC) have been used increasingly to track sources and fate of DOM. Here we describe studies conducted in water from two estuarine systems in the Florida Everglades, with a salinity gradient of 2 to 37 and dissolved organic carbon concentrations from 19.3 to 5.74 mg C L−1, aimed at assessing how the quantity and quality of DOM is coupled to the formation rates and steady-state concentrations of reactive species including singlet oxygen, hydroxyl radical, and the triplet excited state of DOM. These species were related to optical properties and PARAFAC components of the DOM. The formation rate and steady-state concentration of the carbonate radical was calculated in all samples. The data suggests that formation rates, particularly for singlet oxygen and hydroxyl radicals, are strongly coupled to the abundance of terrestrial humic-like substances. A decrease in singlet oxygen, hydroxyl radical, and carbonate radical formation rates and steady-state concentration along the estuarine salinity gradient was observed as the relative concentration of terrestrial humic-like DOM decreased due to mixing with microbial humic-like and protein-like DOM components, while the formation rate of triplet excited-state DOM did not change. Fluorescent DOM was also found to be more tightly coupled to reactive species generation than chromophoric DOM.