978 resultados para text message analysis and question-answering system
Resumo:
Isolates of the Trichophyton mentagrophytes complex vary phenotypically. Whether the closely related zoophilic and anthropophilic anamorphs currently associated with Arthroderma vanbreuseghemii have to be considered as members of the same biological species remains an open question. In order to better delineate species in the T. mentagrophytes complex, we performed a mating analysis of freshly collected isolates from humans and animals with A. benhamiae and A. vanbreuseghemii reference strains, in comparison to internal transcribed spacer (ITS) and 28S rDNA sequencing. Mating experiments as well as ITS and 28S sequencing unambiguously allowed the distinction of A. benhamiae and A. vanbreuseghemii. We have also shown that all the isolates from tinea pedis and tinea unguium identified as T. interdigitale based on ITS sequences mated with A. vanbreuseghemii tester strains, but had lost their ability to give fertile cleistothecia. Therefore, T. interdigitale has to be considered as a humanized species derived from the sexual relative A. vanbreuseghemii.
Resumo:
Interaction analysis is not a prerogative of any discipline in social sciences. It has its own history within each disciplinary field and is related to specific research objects. From the standpoint of psychology, this article first draws upon a distinction between factorial and dialogical conceptions of interaction. It then briefly presents the basis of a dialogical approach in psychology and focuses upon four basic assumptions. Each of them is examined on a theoretical and on a methodological level with a leading question: to what extent is it possible to develop analytical tools that are fully coherent with dialogical assumptions? The conclusion stresses the difficulty of developing methodological tools that are fully consistent with dialogical assumptions and argues that there is an unavoidable tension between accounting for the complexity of an interaction and using methodological tools which necessarily "monologise" this complexity.
Resumo:
The spatial variability of soil and plant properties exerts great influence on the yeld of agricultural crops. This study analyzed the spatial variability of the fertility of a Humic Rhodic Hapludox with Arabic coffee, using principal component analysis, cluster analysis and geostatistics in combination. The experiment was carried out in an area under Coffea arabica L., variety Catucai 20/15 - 479. The soil was sampled at a depth 0.20 m, at 50 points of a sampling grid. The following chemical properties were determined: P, K+, Ca2+, Mg2+, Na+, S, Al3+, pH, H + Al, SB, t, T, V, m, OM, Na saturation index (SSI), remaining phosphorus (P-rem), and micronutrients (Zn, Fe, Mn, Cu and B). The data were analyzed with descriptive statistics, followed by principal component and cluster analyses. Geostatistics were used to check and quantify the degree of spatial dependence of properties, represented by principal components. The principal component analysis allowed a dimensional reduction of the problem, providing interpretable components, with little information loss. Despite the characteristic information loss of principal component analysis, the combination of this technique with geostatistical analysis was efficient for the quantification and determination of the structure of spatial dependence of soil fertility. In general, the availability of soil mineral nutrients was low and the levels of acidity and exchangeable Al were high.
Resumo:
Performance-related pay within public organizations is continuing to spread. Although it can help to strengthen an entrepreneurial spirit in civil servants, its implementation is marred by technical, financial, managerial and cultural problems. This article identifies an added problem, namely the contradiction that exists between a managerial discourse that emphasizes the team and collective performance, on the one hand, and the use of appraisal and reward tools that are above all individual, on the other. Based on an empirical survey carried out within Swiss public organizations, the analysis shows that the team is currently rarely taken into account and singles out the principal routes towards an integrated system for the management and rewarding of civil servants.
Resumo:
The objectives of this work were to estimate the genetic and phenotypic parameters and to predict the genetic and genotypic values of the selection candidates obtained from intraspecific crosses in Panicum maximum as well as the performance of the hybrid progeny of the existing and projected crosses. Seventy-nine intraspecific hybrids obtained from artificial crosses among five apomictic and three sexual autotetraploid individuals were evaluated in a clonal test with two replications and ten plants per plot. Green matter yield, total and leaf dry matter yields and leaf percentage were evaluated in five cuts per year during three years. Genetic parameters were estimated and breeding and genotypic values were predicted using the restricted maximum likelihood/best linear unbiased prediction procedure (REML/BLUP). The dominant genetic variance was estimated by adjusting the effect of full-sib families. Low magnitude individual narrow sense heritabilities (0.02-0.05), individual broad sense heritabilities (0.14-0.20) and repeatability measured on an individual basis (0.15-0.21) were obtained. Dominance effects for all evaluated characteristics indicated that breeding strategies that explore heterosis must be adopted. Less than 5% increase in the parameter repeatability was obtained for a three-year evaluation period and may be the criterion to determine the maximum number of years of evaluation to be adopted, without compromising gain per cycle of selection. The identification of hybrid candidates for future cultivars and of those that can be incorporated into the breeding program was based on the genotypic and breeding values, respectively. The prediction of the performance of the hybrid progeny, based on the breeding values of the progenitors, permitted the identification of the best crosses and indicated the best parents to use in crosses.
Resumo:
The objective of this study was to evaluate the efficiency of spatial statistical analysis in the selection of genotypes in a plant breeding program and, particularly, to demonstrate the benefits of the approach when experimental observations are not spatially independent. The basic material of this study was a yield trial of soybean lines, with five check varieties (of fixed effect) and 110 test lines (of random effects), in an augmented block design. The spatial analysis used a random field linear model (RFML), with a covariance function estimated from the residuals of the analysis considering independent errors. Results showed a residual autocorrelation of significant magnitude and extension (range), which allowed a better discrimination among genotypes (increase of the power of statistical tests, reduction in the standard errors of estimates and predictors, and a greater amplitude of predictor values) when the spatial analysis was applied. Furthermore, the spatial analysis led to a different ranking of the genetic materials, in comparison with the non-spatial analysis, and a selection less influenced by local variation effects was obtained.
Resumo:
Large Dynamic Message Signs (DMSs) have been increasingly used on freeways, expressways and major arterials to better manage the traffic flow by providing accurate and timely information to drivers. Overhead truss structures are typically employed to support those DMSs allowing them to provide wider display to more lanes. In recent years, there is increasing evidence that the truss structures supporting these large and heavy signs are subjected to much more complex loadings than are typically accounted for in the codified design procedures. Consequently, some of these structures have required frequent inspections, retrofitting, and even premature replacement. Two manufacturing processes are primarily utilized on truss structures - welding and bolting. Recently, cracks at welding toes were reported for the structures employed in some states. Extremely large loads (e.g., due to high winds) could cause brittle fractures, and cyclic vibration (e.g., due to diurnal variation in temperature or due to oscillations in the wind force induced by vortex shedding behind the DMS) may lead to fatigue damage, as these are two major failures for the metallic material. Wind and strain resulting from temperature changes are the main loads that affect the structures during their lifetime. The American Association of State Highway and Transportation Officials (AASHTO) Specification defines the limit loads in dead load, wind load, ice load, and fatigue design for natural wind gust and truck-induced gust. The objectives of this study are to investigate wind and thermal effects in the bridge type overhead DMS truss structures and improve the current design specifications (e.g., for thermal design). In order to accomplish the objective, it is necessary to study structural behavior and detailed strain-stress of the truss structures caused by wind load on the DMS cabinet and thermal load on the truss supporting the DMS cabinet. The study is divided into two parts. The Computational Fluid Dynamics (CFD) component and part of the structural analysis component of the study were conducted at the University of Iowa while the field study and related structural analysis computations were conducted at the Iowa State University. The CFD simulations were used to determine the air-induced forces (wind loads) on the DMS cabinets and the finite element analysis was used to determine the response of the supporting trusses to these pressure forces. The field observation portion consisted of short-term monitoring of several DMS Cabinet/Trusses and long-term monitoring of one DMS Cabinet/Truss. The short-term monitoring was a single (or two) day event in which several message sign panel/trusses were tested. The long-term monitoring field study extended over several months. Analysis of the data focused on trying to identify important behaviors under both ambient and truck induced winds and the effect of daily temperature changes. Results of the CFD investigation, field experiments and structural analysis of the wind induced forces on the DMS cabinets and their effect on the supporting trusses showed that the passage of trucks cannot be responsible for the problems observed to develop at trusses supporting DMS cabinets. Rather the data pointed toward the important effect of the thermal load induced by cyclic (diurnal) variations of the temperature. Thermal influence is not discussed in the specification, either in limit load or fatigue design. Although the frequency of the thermal load is low, results showed that when temperature range is large the restress range would be significant to the structure, especially near welding areas where stress concentrations may occur. Moreover stress amplitude and range are the primary parameters for brittle fracture and fatigue life estimation. Long-term field monitoring of one of the overhead truss structures in Iowa was used as the research baseline to estimate the effects of diurnal temperature changes to fatigue damage. The evaluation of the collected data is an important approach for understanding the structural behavior and for the advancement of future code provisions. Finite element modeling was developed to estimate the strain and stress magnitudes, which were compared with the field monitoring data. Fatigue life of the truss structures was also estimated based on AASHTO specifications and the numerical modeling. The main conclusion of the study is that thermal induced fatigue damage of the truss structures supporting DMS cabinets is likely a significant contributing cause for the cracks observed to develop at such structures. Other probable causes for fatigue damage not investigated in this study are the cyclic oscillations of the total wind load associated with the vortex shedding behind the DMS cabinet at high wind conditions and fabrication tolerances and induced stresses due to fitting of tube to tube connections.
Resumo:
This paper addresses the application of a PCA analysis on categorical data prior to diagnose a patients data set using a Case-Based Reasoning (CBR) system. The particularity is that the standard PCA techniques are designed to deal with numerical attributes, but our medical data set contains many categorical data and alternative methods as RS-PCA are required. Thus, we propose to hybridize RS-PCA (Regular Simplex PCA) and a simple CBR. Results show how the hybrid system produces similar results when diagnosing a medical data set, that the ones obtained when using the original attributes. These results are quite promising since they allow to diagnose with less computation effort and memory storage
Resumo:
The integrated system of design for manufacturing and assembly (DFMA) and internet based collaborative design are presented to support product design, manufacturing process, and assembly planning for axial eccentric oil-pump design. The presented system manages and schedules group oriented collaborative activities. The design guidelines of internet based collaborative design & DFMA are expressed. The components and the manufacturing stages of axial eccentric oil-pump are expressed in detail. The file formats of the presented system include the data types of collaborative design of the product, assembly design, assembly planning and assembly system design. Product design and assembly planning can be operated synchronously and intelligently and they are integrated under the condition of internet based collaborative design and DFMA. The technologies of collaborative modelling, collaborative manufacturing, and internet based collaborative assembly for the specific pump construction are developed. A seven-security level is presented to ensure the security of the internet based collaborative design system.
Resumo:
Life cycle analysis (LCA) is a comprehensive method for assessing the environmental impact of a product or an activity over its entire life cycle. The purpose of conducting LCA studies varies from one application to another. Different applications use LCA for different purposes. In general, the main aim of using LCA is to reduce the environmental impact of products through guiding the decision making process towards more sustainable solutions. The most critical phase in an LCA study is the Life Cycle Impact Assessment (LCIA) where the life cycle inventory (LCI) results of the considered substances related to the study of a certain system are transformed into understandable impact categories that represent the impact on the environment. In this research work, a general structure clarifying the steps that shall be followed ir order to conduct an LCA study effectively is presented. These steps are based on the ISO 14040 standard framework. In addition, a survey is done on the most widely used LCIA methodologies. Recommendations about possible developments and suggetions for further research work regarding the use of LCA and LCIA methodologies are discussed as well.
Resumo:
Pulsewidth-modulated (PWM) rectifier technology is increasingly used in industrial applications like variable-speed motor drives, since it offers several desired features such as sinusoidal input currents, controllable power factor, bidirectional power flow and high quality DC output voltage. To achieve these features,however, an effective control system with fast and accurate current and DC voltage responses is required. From various control strategies proposed to meet these control objectives, in most cases the commonly known principle of the synchronous-frame current vector control along with some space-vector PWM scheme have been applied. Recently, however, new control approaches analogous to the well-established direct torque control (DTC) method for electrical machines have also emerged to implement a high-performance PWM rectifier. In this thesis the concepts of classical synchronous-frame current control and DTC-based PWM rectifier control are combined and a new converter-flux-based current control (CFCC) scheme is introduced. To achieve sufficient dynamic performance and to ensure a stable operation, the proposed control system is thoroughly analysed and simple rules for the controller design are suggested. Special attention is paid to the estimationof the converter flux, which is the key element of converter-flux-based control. Discrete-time implementation is also discussed. Line-voltage-sensorless reactive reactive power control methods for the L- and LCL-type line filters are presented. For the L-filter an open-loop control law for the d-axis current referenceis proposed. In the case of the LCL-filter the combined open-loop control and feedback control is proposed. The influence of the erroneous filter parameter estimates on the accuracy of the developed control schemes is also discussed. A newzero vector selection rule for suppressing the zero-sequence current in parallel-connected PWM rectifiers is proposed. With this method a truly standalone and independent control of the converter units is allowed and traditional transformer isolation and synchronised-control-based solutions are avoided. The implementation requires only one additional current sensor. The proposed schemes are evaluated by the simulations and laboratory experiments. A satisfactory performance and good agreement between the theory and practice are demonstrated.
Resumo:
During the latest few years the need for new motor types has grown, since both high efficiency and an accurate dynamic performance are demanded in industrial applications. For this reason, new effective control systems such as direct torque control (DTC) have been developed. Permanent magnet synchronous motors (PMSM) are well suitable for new adjustable speed AC inverter drives, because their efficiency and power factor are not depending on the pole pair number and speed to the same extent as it is the case in induction motors. Therefore, an induction motor (IM) with a mechanical gearbox can often be replaced with a direct PM motor drive. Space as well as costs will be saved, because the efficiency increases and the cost of maintenance decreases as well. This thesis deals with design criterion, analytical calculation and analysis of the permanent magnet synchronous motor for both sinusoidal air-gap flux density and rectangular air-gapflux density. It is examined how the air-gap flux, flux densities, inductances and torque can be estimated analytically for salient pole and non-salient pole motors. It has been sought by means of analytical calculations for the ultimate construction for machines rotating at relative low 300 rpm to 600 rpm speeds, which are suitable speeds e.g. in Pulp&Paper industry. The calculations are verified by using Finite Element calculations and by measuring of prototype motor. The prototype motor is a 45 kW, 600 rpm PMSM with buried V-magnets, which is a very appropriate construction for high torque motors with a high performance. With the purposebuilt prototype machine it is possible not only to verify the analytical calculations but also to show whether the 600 rpm PMSM can replace the 1500 rpm IM with a gear. It can also be tested if the outer dimensions of the PMSM may be the same as for the IM and if the PMSM in this case can produce a 2.5 fold torque, in consequence of which it may be possible to achieve the same power. The thesis also considers the question how to design a permanent magnet synchronous motor for relatively low speed applications that require a high motor torqueand efficiency as well as bearable costs of permanent magnet materials. It is shown how a selection of different parameters affects the motor properties. Key words: Permanent magnet synchronous motor, PMSM, surface magnets, buried magnets
Resumo:
In 2008, a Swiss Academies of Arts and Sciences working group chaired by Professor Emilio Bossi issued a "Memorandum on scientific integrity and the handling of misconduct in the scientific context", together with a paper setting out principles and procedures concerning integrity in scientific research. In the Memorandum, unjustified claims of authorship in scientific publications are referred to as a form of scientific misconduct - a view widely shared in other countries. In the Principles and Procedures, the main criteria for legitimate authorship are specified, as well as the associated responsibilities. It is in fact not uncommon for disputes about authorship to arise with regard to publications in fields where research is generally conducted by teams rather than individuals. Such disputes may concern not only the question who is or is not to be listed as an author but also, frequently, the precise sequence of names, if the list is to reflect the various authors' roles and contributions. Subjective assessments of the contributions made by the individual members of a research group may differ substantially. As scientific collaboration - often across national boundaries - is now increasingly common, ensuring appropriate recognition of all parties is a complex matter and, where disagreements arise, it may not be easy to reach a consensus. In addition, customs have changed over the past few decades; for example, the practice of granting "honorary" authorship to an eminent researcher - formerly not unusual - is no longer considered acceptable. It should be borne in mind that the publications list has become by far the most important indicator of a researcher's scientific performance; for this reason, appropriate authorship credit has become a decisive factor in the careers of young researchers, and it needs to be managed and protected accordingly. At the international and national level, certain practices have therefore developed concerning the listing of authors and the obligations of authorship. The Scientific Integrity Committee of the Swiss Academies of Arts and Sciences has collated the relevant principles and regulations and formulated recommendations for authorship in scientific publications. These should help to prevent authorship disputes and offer guidance in the event of conflicts.
Identification-commitment inventory (ICI-Model): confirmatory factor analysis and construct validity
Resumo:
The aim of this study is to confirm the factorial structure of the Identification-Commitment Inventory (ICI) developed within the frame of the Human System Audit (HSA) (Quijano et al. in Revist Psicol Soc Apl 10(2):27-61, 2000; Pap Psicól Revist Col Of Psicó 29:92-106, 2008). Commitment and identification are understood by the HSA at an individual level as part of the quality of human processes and resources in an organization; and therefore as antecedents of important organizational outcomes, such as personnel turnover intentions, organizational citizenship behavior, etc. (Meyer et al. in J Org Behav 27:665-683, 2006). The theoretical integrative model which underlies ICI Quijano et al. (2000) was tested in a sample (N = 625) of workers in a Spanish public hospital. Confirmatory factor analysis through structural equation modeling was performed. Elliptical least square solution was chosen as estimator procedure on account of non-normal distribution of the variables. The results confirm the goodness of fit of an integrative model, which underlies the relation between Commitment and Identification, although each one is operatively different.
Resumo:
Industry's growing need for higher productivity is placing new demands on mechanisms connected with electrical motors, because these can easily lead to vibration problems due to fast dynamics. Furthermore, the nonlinear effects caused by a motor frequently reduce servo stability, which diminishes the controller's ability to predict and maintain speed. Hence, the flexibility of a mechanism and its control has become an important area of research. The basic approach in control system engineering is to assume that the mechanism connected to a motor is rigid, so that vibrations in the tool mechanism, reel, gripper or any apparatus connected to the motor are not taken into account. This might reduce the ability of the machine system to carry out its assignment and shorten the lifetime of the equipment. Nonetheless, it is usually more important to know how the mechanism, or in other words the load on the motor, behaves. A nonlinear load control method for a permanent magnet linear synchronous motor is developed and implemented in the thesis. The purpose of the controller is to track a flexible load to the desired velocity reference as fast as possible and without awkward oscillations. The control method is based on an adaptive backstepping algorithm with its stability ensured by the Lyapunov stability theorem. As a reference controller for the backstepping method, a hybrid neural controller is introduced in which the linear motor itself is controlled by a conventional PI velocity controller and the vibration of the associated flexible mechanism is suppressed from an outer control loop using a compensation signal from a multilayer perceptron network. To avoid the local minimum problem entailed in neural networks, the initial weights are searched for offline by means of a differential evolution algorithm. The states of a mechanical system for controllers are estimated using the Kalman filter. The theoretical results obtained from the control design are validated with the lumped mass model for a mechanism. Generalization of the mechanism allows the methods derived here to be widely implemented in machine automation. The control algorithms are first designed in a specially introduced nonlinear simulation model and then implemented in the physical linear motor using a DSP (Digital Signal Processor) application. The measurements prove that both controllers are capable of suppressing vibration, but that the backstepping method is superior to others due to its accuracy of response and stability properties.