906 resultados para sympathetic nervous system
Resumo:
ABSTRACT: Recent progress in neuroscience revealed diverse regions of the CNS which moderate autonomic and affective responses. The ventro-medial prefrontal cortex (vmPFC) plays a key role in these regulations. There is evidence that vmPFC activity is associated with cardiovascular changes during a motor task that are mediated by parasympathetic activity. Moreover, vmPFC activity makes important contributions to regulations of affective and stressful situations.This review selectively summarizes literature in which vmPFC activation was studied in healthy subjects as well as in patients with affective disorders. The reviewed literature suggests that vmPFC activity plays a pivotal role in biopsychosocial processes of disease. Activity in the vmPFC might link affective disorders, stressful environmental conditions, and immune function.
Resumo:
OBJECTIVES: In fetal ultrasound imaging, teaching and experience are of paramount importance to improve prenatal detection rates of fetal abnormalities. Yet both aspects depend on exposure to normal and, in particular, abnormal 'specimens'. We aimed to generate a number of simple virtual reality (VR) objects of the fetal central nervous system for use as educational tools. METHODS: We applied a recently proposed algorithm for the generation of fetal VR object movies to the normal and abnormal fetal brain and spine. Interactive VR object movies were generated from ultrasound volume data from normal fetuses and fetuses with typical brain or spine anomalies. Pathognomonic still images from all object movies were selected and annotated to enable recognition of these features in the object movies. RESULTS: Forty-six virtual reality object movies from 22 fetuses (two with normal and 20 with abnormal brains) were generated in an interactive display format (QuickTime) and key images were annotated. The resulting .mov files are available for download from the website of this journal. CONCLUSIONS: VR object movies can be generated from educational ultrasound volume datasets, and may prove useful for teaching and learning normal and abnormal fetal anatomy.
Resumo:
OBJECTIVE: CNS or peripheral nervous system dysfunction sometimes occurs in Henoch-Schönlein patients. METHODS: We review all Henoch-Schönlein cases published after 1969 with CNS dysfunction without severe hypertension and neuroimaging studies (n = 35), cranial or peripheral neuropathy (n = 15), both CNS and peripheral nervous system dysfunction without severe hypertension (n = 2) or nervous system dysfunction with severe hypertension (n = 2). Forty-four of the 54 patients were <20 years of age. RESULTS: In patients with CNS dysfunction without or with severe hypertension the following presentations were observed in decreasing order of frequency: altered level of consciousness, convulsions, focal neurological deficits, visual abnormalities and verbal disability. Imaging studies disclosed the following lesions: vascular lesions almost always involving two or more vessels, intracerebral haemorrhage, posterior subcortical oedema, diffuse brain oedema and thrombosis of the superior sagittal sinus. Following lesions were noted in the subjects with cranial or peripheral neuropathy without severe hypertension: peroneal neuropathy, peripheral facial palsy, Guillain-Barré syndrome, brachial plexopathy, posterior tibial nerve neuropathy, femoral neuropathy, ulnar neuropathy and mononeuritis multiplex. Persisting signs of either CNS (n = 9) or peripheral (n = 1) nervous system dysfunction were sometimes reported. CONCLUSIONS: In Henoch-Schönlein syndrome, signs of nervous system dysfunction are uncommon but clinically relevant. This review helps clinicians managing Henoch-Schönlein syndrome with nervous system dysfunction.
Resumo:
Of 54 children with acute lymphoblastic leukemia (ALL) and first hematological recurrence observed between 1985 and 1989, 31 relapsed while still on treatment and 23 after cessation of therapy. Of the former, only one survived. Of the latter, 11 children survived after a minimum follow-up of 25 months. During the same period, a first isolated testicular relapse was observed in nine boys, of whom six survived, and an isolated CNS relapse in eight patients, of whom three survived. As a rule, survivors of a bone marrow or testicular relapse were doing well while those surviving a CNS relapse had considerable neuropsychological sequelae. These results, compared with those of two preceding studies, suggest that with intensification of front-line treatments, it becomes more difficult to rescue children who relapse, particularly those with a bone marrow relapse while on therapy.
Resumo:
Myc family genes are often deregulated in embryonal tumors of childhood including medulloblastoma and neuroblastoma and are frequently associated with aggressive, poorly differentiated tumors. The Myc protein is a transcription factor that regulates a variety of cellular processes including cell growth and proliferation, cell cycle progression, differentiation, apoptosis, and cell motility. Potential strategies that either inhibit the proliferation-promoting effect of Myc and/or activate its pro-apoptotic function are presently being explored. In this review, we will give an overview of Myc activation in embryonal tumors and discuss current strategies aimed at targeting Myc for cancer treatment.
Resumo:
BACKGROUND Little is known about the vasomotor function of human coronary collateral vessels. The purpose of this study was to examine collateral flow under a strong sympathetic stimulus (cold pressor test, CPT). METHODS In 30 patients (62 +/- 12 years) with coronary artery disease, two subsequent coronary artery occlusions were performed with random CPT during one of them. Two minutes before and during the 1 minute-occlusion, the patient's hand was immerged in ice water. For the calculation of a perfusion pressure-independent collateral flow index (CFI), the aortic (Pao), the central venous (CVP) and the coronary wedge pressure (Poccl) were measured: CFI = (Poccl - CVP)/(Pao - CVP). RESULTS CPT lead to an increase in Pao from 98 +/- 14 to 105 +/- 15 mm Hg (p = 0.002). Without and with CPT, CFI increased during occlusion from 14% +/- 10% to 16% +/- 10% (p = 0.03) and from 17% +/- 9% to 19% +/- 9% (p = 0.006), respectively, relative to normal flow. During CPT, CFI was significantly higher at the beginning as well as at the end of the occlusion compared to identical instants without CPT. CFI at the end of the control occlusion did not differ significantly from the CFI at the beginning of occlusion with CPT. CONCLUSIONS During balloon occlusion, collateral flow increased due to collateral recruitment independent of external sympathetic stimulation. Sympathetic stimulation using CPT additionally augmented collateral flow. The collateral-flow-increasing effect of CPT is comparable to the recruitment effect of the occlusion itself. This may reflect a coronary collateral vasodilation mediated by the sympathetic nervous system.
Resumo:
BACKGROUND The sympathetic nervous system (SNS) is an important regulator of cardiovascular function. Activation of SNS plays an important role in the pathophysiology and the prognosis of cardiovascular diseases such as heart failure, acute coronary syndromes, arrhythmia, and possibly hypertension. Vasodilators such as adenosine and sodium nitroprusside are known to activate SNS via baroreflex mechanisms. Because vasodilators are widely used in the treatment of patients with cardiovascular diseases, the aim of the present study was to assess the influence of clinically used dosages of isosorbide dinitrate and captopril on sympathetic nerve activity at rest and during stimulatory maneuvers. METHODS AND RESULTS Twenty-eight healthy volunteers were included in this double-blind placebo-controlled study, and muscle sympathetic nerve activity (MSA; with microelectrodes in the peroneal nerve), blood pressure, heart rate, and neurohumoral parameters were measured before and 90 minutes after the oral administration of 40 mg isosorbide dinitrate or 6.25 mg captopril. Furthermore, a 3-minute mental stress test and a cold pressor test were performed before and 90 minutes after drug administration. Resting MSA did not change after captopril and decreased compared with placebo (P < .05 versus placebo), whereas isosorbide dinitrate led to a marked increase in MSA (P < .05). Systolic blood pressure was reduced by isosorbide dinitrate (P < .05), whereas captopril decreased diastolic blood pressure (P < .05). The increases in MSA, blood pressure, and heart rate during mental stress were comparable before and after drug administration regardless of the medication. During cold pressor test, MSA and systolic and diastolic blood pressures increased to the same degree independent of treatment, but after isosorbide dinitrate, the increase in MSA seemed to be less pronounced. Heart rate did not change during cold stimulation. Plasma renin activity increased after captopril and isosorbide dinitrate (P < .05), whereas placebo had no effect. Endothelin-1 increased after placebo and isosorbide dinitrate (P < .05) but not after captopril. CONCLUSIONS Thus, captopril suppressed MSA despite lowering of diastolic blood pressure but allowed normal adaptation of the SNS during mental or physical stress. In contrast, the nitrate strongly activated the SNS under baseline conditions. These findings demonstrate that vasodilators differentially interact with the SNS, which could be of importance in therapeutic strategies for the treatment of patients with cardiovascular diseases.
Resumo:
Progesterone secretion is crucial for maintaining pregnancy to parturition in mammalian species, and in cattle the corpus luteum is the primary source of this hormone. This study determined the roles of prolactin (PRL), growth hormone (GH) and luteinizing hormone (LH) in the luteotropic process in beef heifers hypophyseal stalk-transected (HST, n = 7) or sham operated on (SOC, n = 9) during midgestation. The main finding was that endogenous PRL and GH maintained progesterone secretion in HST heifers similar to that in SOC throughout pregnancy. Serum PRL averaged 37 vs 187 and GH 2 vs 4 ng/ml in HST compared with SOC, whereas LH abruptly decreased to undetectable levels after HST compared with a modest 0A4 ng/ml in SOC heifers. The second finding was that parturition and lactation occurred in HST heifers with calf delivery induced to occur at the same time as SOC. Milk production in HST animals was severely limited, and postpartum estrus obliterated compared with SOC. The suckling stimulus sustained milk ejection in HST heifers in spite of diminished PRL and GH secretion. The results suggest that PRL, GH and possibly placental lactogen are luteotropic during pregnancy in cattle.
Resumo:
Progesterone secretion is crucial for maintaining pregnancy to parturition in mammalian species, and in cattle the corpus luteum is the primary source of this hormone. This study determined the roles of prolactin (PRL), growth hormone (GH) and luteinizing hormone (LH) in the luteotropic process in beef heifers hypophyseal stalk-transected (HST, n = 7) or sham operated on (SOC, n = 9) during midgestation. The main finding was that endogenous PRL and GH maintained progesterone secretion in HST heifers similar to that in SOC throughout pregnancy. Serum PRL averaged 37 vs. 187 and GH 2 vs. 4 ng/ml in HST compared with SOC, whereas LH abruptly decreased to undetectable levels after HST compared with a modest 0.4 ng/ml in SOC heifers. The second finding was that parturition and lactation occurred in HST heifers with calf delivery induced to occur at the same time as SOC. Milk production in HST animals was severely limited and postpartum estrus obliterated compared with SOC. The suckling stimulus sustained milk ejection in HST heifers in spite of diminished PRL and GH secretion. The results suggest that PRL, GH, and possibly placental lactogen are luteotropic during pregnancy in cattle.
Resumo:
A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units. © RSNA, 2014 Online supplemental material is available for this article.
Resumo:
Traumatic brain injury (TBI) is a major cause of morbidity and mortality in the United States. Current clinical therapy is focused on optimization of the acute/subacute intracerebral milieu, minimizing continued cell death, and subsequent intense rehabilitation to ameliorate the prolonged physical, cognitive, and psychosocial deficits that result from TBI. Adult progenitor (stem) cell therapies have shown promise in pre-clinical studies and remain a focus of intense scientific investigation. One of the fundamental challenges to successful translation of the large body of pre-clinical work is the delivery of progenitor cells to the target location/organ. Classically used vehicles such as intravenous and intra arterial infusion have shown low engraftment rates and risk of distal emboli. Novel delivery methods such as nanofiber scaffold implantation could provide the structural and nutritive support required for progenitor cell proliferation, engraftment, and differentiation. The focus of this review is to explore the current state of the art as it relates to current and novel progenitor cell delivery methods.
Resumo:
Isolated cerebral folate deficiency was detected in a 13-year-old girl with cognitive and motor difficulties and juvenile rheumatoid arthritis. Her serum contains autoantibodies that block membrane-bound folate receptors that are on the choroid plexus and diminish the uptake of folate into the spinal fluid. Whereas her serum folate exceeded 21 ng/mL, her spinal fluid contained 3.2 ng/mL of 5-methyltetrahydrofolate as a consequence of the autoantibodies diminishing the uptake of this folate.