898 resultados para switch domain
Resumo:
The nuclear factor I (NFI) family consists of sequence-specific DNA-binding proteins that activate both transcription and adenovirus DNA replication. We have characterized three new members of the NFI family that belong to the Xenopus laevis NFI-X subtype and differ in their C-termini. We show that these polypeptides can activate transcription in HeLa and Drosophila Schneider line 2 cells, using an activation domain that is subdivided into adjacent variable and subtype-specific domains each having independent activation properties in chimeric proteins. Together, these two domains constitute the full NFI-X transactivation potential. In addition, we find that the X. laevis NFI-X proteins are capable of activating adenovirus DNA replication through their conserved N-terminal DNA-binding domains. Surprisingly, their in vitro DNA-binding activities are specifically inhibited by a novel repressor domain contained within the C-terminal part, while the dimerization and replication functions per se are not affected. However, inhibition of DNA-binding activity in vitro is relieved within the cell, as transcriptional activation occurs irrespective of the presence of the repressor domain. Moreover, the region comprising the repressor domain participates in transactivation. Mechanisms that may allow the relief of DNA-binding inhibition in vivo and trigger transcriptional activation are discussed.
Resumo:
The MyHits web server (http://myhits.isb-sib.ch) is a new integrated service dedicated to the annotation of protein sequences and to the analysis of their domains and signatures. Guest users can use the system anonymously, with full access to (i) standard bioinformatics programs (e.g. PSI-BLAST, ClustalW, T-Coffee, Jalview); (ii) a large number of protein sequence databases, including standard (Swiss-Prot, TrEMBL) and locally developed databases (splice variants); (iii) databases of protein motifs (Prosite, Interpro); (iv) a precomputed list of matches ('hits') between the sequence and motif databases. All databases are updated on a weekly basis and the hit list is kept up to date incrementally. The MyHits server also includes a new collection of tools to generate graphical representations of pairwise and multiple sequence alignments including their annotated features. Free registration enables users to upload their own sequences and motifs to private databases. These are then made available through the same web interface and the same set of analytical tools. Registered users can manage their own sequences and annotations using only web tools and freeze their data in their private database for publication purposes.
Resumo:
Invariant Valpha14 (Valpha14i) NKT cells are a murine CD1d-dependent regulatory T cell subset characterized by a Valpha14-Jalpha18 rearrangement and expression of mostly Vbeta8.2 and Vbeta7. Whereas the TCR Vbeta domain influences the binding avidity of the Valpha14i TCR for CD1d-alpha-galactosylceramide complexes, with Vbeta8.2 conferring higher avidity binding than Vbeta7, a possible impact of the TCR Vbeta domain on Valpha14i NKT cell selection by endogenous ligands has not been studied. In this study, we show that thymic selection of Vbeta7(+), but not Vbeta8.2(+), Valpha14i NKT cells is favored in situations where endogenous ligand concentration or TCRalpha-chain avidity are suboptimal. Furthermore, thymic Vbeta7(+) Valpha14i NKT cells were preferentially selected in vitro in response to CD1d-dependent presentation of endogenous ligands or exogenously added self ligand isoglobotrihexosylceramide. Collectively, our data demonstrate that the TCR Vbeta domain influences the selection of Valpha14i NKT cells by endogenous ligands, presumably because Vbeta7 confers higher avidity binding.
Resumo:
CD1d tetramers loaded with alpha-galactosylceramide (alpha-GalCer) bind selectively to mouse invariant Valpha14 (Valpha14i) NKT cells and their human counterparts. Whereas tetramer binding strictly depends on the expression of a Valpha14-Jalpha18 chain in murine NKT cells, the associated beta-chain (typically expressing Vbeta8.2 or Vbeta7) appears not to influence tetramer binding. In this study, we describe novel alpha-GalCer-loaded mouse and human CD1d-IgG1 dimers, which revealed an unexpected influence of the TCR-beta chain on the avidity of CD1d:alpha-GalCer binding. A subset of Valpha14i NKT cells clearly discriminated alpha-GalCer bound to mouse or human CD1d on the basis of avidity differences conferred by the Vbeta domain of the TCR-beta chain, with Vbeta8.2 conferring higher avidity binding than Vbeta7.
Resumo:
Serine repeat antigen 5 (SERA5) is an abundant antigen of the human malaria parasite Plasmodium falciparum and is the most strongly expressed member of the nine-gene SERA family. It appears to be essential for the maintenance of the erythrocytic cycle, unlike a number of other members of this family, and has been implicated in parasite egress and/or erythrocyte invasion. All SERA proteins possess a central domain that has homology to papain except in the case of SERA5 (and some other SERAs), where the active site cysteine has been replaced with a serine. To investigate if this domain retains catalytic activity, we expressed, purified, and refolded a recombinant form of the SERA5 enzyme domain. This protein possessed chymotrypsin-like proteolytic activity as it processed substrates downstream of aromatic residues, and its activity was reversed by the serine protease inhibitor 3,4-diisocoumarin. Although all Plasmodium SERA enzyme domain sequences share considerable homology, phylogenetic studies revealed two distinct clusters across the genus, separated according to whether they possess an active site serine or cysteine. All Plasmodia appear to have at least one member of each group. Consistent with separate biological roles for members of these two clusters, molecular modeling studies revealed that SERA5 and SERA6 enzyme domains have dramatically different surface properties, although both have a characteristic papain-like fold, catalytic cleft, and an appropriately positioned catalytic triad. This study provides impetus for the examination of SERA5 as a target for antimalarial drug design.
Resumo:
In mammalian cells, proper gene regulation is achieved by the complex interplay of transcription factors that activate or repress gene expression by binding to the regulatory regions of target promoters. While transcriptional activators have been extensively characterised and classified into functional groups, relatively little is known about the comparative strength and cell type-specificity of transcriptional repressors. Here, we have compared the ability of a series of eukaryotic repression domains to silence basal and activated transcription. A series of the most potent repression domains was further tested in the context of a gene therapy gene-switch system in various cell types. The results indicate that the analysed repression domains exert varying silencing activities in different promoter contexts. Furthermore, their potential for gene silencing varies also depending on the cellular context. When multimerised within one chimeric repressor protein, particular combinations of repressor domains were found to display synergistic repressing effects and efficient repression in a panel of cell lines. This approach thus allowed the identification of transcriptional repressors that are both potent and versatile in terms of cellular specificity as a basis for gene switch systems.
Resumo:
The activation of CD40 on B cells, macrophages, and dendritic cells by its ligand CD154 (CD40L) is essential for the development of humoral and cellular immune responses. CD40L and other TNF superfamily ligands are noncovalent homotrimers, but the form under which CD40 exists in the absence of ligand remains to be elucidated. Here, we show that both cell surface-expressed and soluble CD40 self-assemble, most probably as noncovalent dimers. The cysteine-rich domain 1 (CRD1) of CD40 participated to dimerization and was also required for efficient receptor expression. Modelization of a CD40 dimer allowed the identification of lysine 29 in CRD1, whose mutation decreased CD40 self-interaction without affecting expression or response to ligand. When expressed alone, recombinant CD40-CRD1 bound CD40 with a KD of 0.6 μm. This molecule triggered expression of maturation markers on human dendritic cells and potentiated CD40L activity. These results suggest that CD40 self-assembly modulates signaling, possibly by maintaining the receptor in a quiescent state.
Resumo:
Hailey-Hailey disease (HHD) is an autosomal dominant disorder characterized by suprabasal cutaneous cell separation (acantholysis) leading to the development of erosive and oozing skin lesion. Micro RNAs (miRNAs) are endogenous post-transcriptional modulators of gene expression with critical functions in health and disease. Here, we evaluated whether the expression of specific miRNAs may play a role in the pathogenesis of HHD. Here, we report that miRNAs are expressed in a non-random manner in Hailey-Hailey patients. miR-125b appeared a promising candidate for playing a role in HHD manifestation. Both Notch1 and p63 are part of a regulatory signalling whose function is essential for the control of keratinocyte proliferation and differentiation and of note, the expression of both Notch1 and p63 is downregulated in HHD-derived keratinocytes. We found that both Notch1 and p63 expression is strongly suppressed by miR-125b expression. Additionally, we found that miR-125b expression is increased by an oxidative stress-dependent mechanism. Our data suggest that oxidative stress-mediated induction of miR-125b plays a specific role in the pathogenesis of HHD by regulating the expression of factors playing an important role in keratinocyte proliferation and differentiation.
Resumo:
Efficient priming of adaptive immunity depends on danger signals provided by innate immune pathways. As an example, inflammasome-mediated activation of caspase-1 and IL-1beta is crucial for the development of reactive T cells targeting sensitizers like dinitrofluorobenzene (DNFB). Surprisingly, DNFB and dinitrothiocyanobenzene provide cross-reactive Ags yet drive opposing, sensitizing vs tolerizing, T cell responses. In this study, we show that, in mice, inflammasome-signaling levels can be modulated to turn dinitrothiocyanobenzene into a sensitizer and DNFB into a tolerizer, and that it correlates with the IL-6 and IL-12 secretion levels, affecting Th1, Th17, and regulatory T cell development. Hence, our data provide the first evidence that the inflammasome can define the type of adaptive immune response elicited by an Ag, and hint at new strategies to modulate T cell responses in vivo.
Resumo:
Rhoptry-associated protein 2 (RAP2) is known to be discharged from rhoptry onto the membrane surface of infected and uninfected erythrocytes (UEs) ex vivo and in vitro and this information provides new insights into the understanding of the pathology of severe anemia in falciparum malaria. In this study, a hexahistidine-tagged recombinant protein corresponding to residues 5-190 of the N-terminal of Plasmodium falciparum RAP2 (rN-RAP2) was produced using a new method of solubilization and purification. Expression was induced with D-lactose, a less expensive alternative inducer to the more common isopropyl-²-D-thio-galactopyranosidase. The recombinant protein was purified using two types of commercially-available affinity columns, iminodiacetic and nitrilotriacetic. rN-RAP2 had immunogenic potential, since it induced high titers of anti-RAP2 antibodies in mice. These antibodies recognized full-length RAP2 prepared from Triton X-100 extracts from two strains of P. falciparum. In fact, the antibody recognized a 29-kDa product of RAP2 cleavage as well as 82 and 70-kDa products of RAP1 cleavage. These results indicate that the two antigens share sequence epitopes. Our expressed protein fragment was shown to contain a functional epitope that is also present in rhoptry-derived ring surface protein 2 which attaches to the surface of both infected and UEs and erythroid precursor cells in the bone marrow of malaria patients. Serum from malaria patients who developed anemia during infection recognized rN-RAP2, suggesting that this protein fragment may be important for epidemiological studies investigating whether immune responses to RAP2 exacerbate hemolysis in falciparum malaria patients.
Resumo:
BACKGROUND: Factors promoting the emergence of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) connection domain mutations and their effect on antiretroviral therapy (ART) are still largely undetermined. We investigated this matter by analyzing genotypic resistance tests covering 400 amino acid positions in the RT of HIV-1 subtype B viruses and corresponding treatment histories and laboratory measurements. METHODS: The emergence of connection domain mutations was studied in 334 patients receiving monotherapy or dual therapy with thymidine analogues at the time of the genotypic resistance test. Response to subsequent combination ART (cART) was analyzed using Cox regression for 291 patients receiving unboosted protease inhibitors. Response was defined by ever reaching an HIV RNA level <50 copies/mL during the first cART. RESULTS: The connection domain mutations N348I, R356K, R358K, A360V, and A371V were more frequently observed in ART-exposed than ART-naive patients, of which only N348I and A360V were nonpolymorphic (with a prevalence of <1.5% in untreated patients). N348I correlated with M184V and predominantly occurred in patients receiving lamivudine and zidovudine concomitantly. A360V was not associated with specific drug combinations and was found to emerge later than M184V or thymidine analogue mutations. Nonpolymorphic connection domain mutations were rarely detected in the absence of established drug resistance mutations in ART-exposed individuals (prevalence, <1%). None of the 5 connection domain mutations associated with treatment showed a statistically significant effect on response to cART. CONCLUSIONS: Despite their frequent emergence, connection domain mutations did not show large detrimental effects on response to cART. Currently, routine implementation of connection domain sequencing seems unnecessary for developed health care settings.
Resumo:
The objective of this study is to understand the structural flexibility and curvature of the E2 protein of human papillomavirus type 18 using molecular dynamics (6 ns). E2 is required for viral DNA replication and its disruption could be an anti-viral strategy. E2 is a dimer, with each monomer folding into a stable open-faced β-sandwich. We calculated the mobility of the E2 dimer and found that it was asymmetric. These different mobilities of E2 monomers suggest that drugs or vaccines could be targeted to the interface between the two monomers.
Resumo:
Resistance of Helicobacter pylori to clarithromycin is characterised by simple point mutations in the 23S ribosomal RNA (rRNA) gene and is responsible for the majority of cases of failure to eradicate this bacterium. In this paper, we characterised the variability of the 23S rRNA gene in biopsies of patients with gastric pathologies in the eastern Amazon (Northern Region of Brazil) using PCR and sequencing. A total of 49 sequences of H. pylori strains were analysed and of those, 75.6% presented nucleotide substitutions: A2142G (3.3%), T2182C (12.9%), G2224A (6.45%), T2215C (61.3%), A2192G (3.3%), G2204C (6.4%) and T2221C (6.4%). Of the mutations identified, four are known mutations related to cases of resistance and 16.1% are not yet described, revealing a high prevalence of mutations in the H. pylori 23S rRNA gene among the strains circulating in the in the eastern Amazon. The high prevalence in individuals with gastric pathologies in the Northern Region of Brazil demonstrates the need for characterising the profile of these strains to provide correct therapy for patients, considering that mutations in this gene are normally associated with resistance to the primary medication used in controlling H. pylori infection.
Resumo:
The photoreceptor phytochrome B (phyB) interconverts between the biologically active Pfr (λmax = 730 nm) and inactive Pr (λmax = 660 nm) forms in a red/far-red-dependent fashion and regulates, as molecular switch, many aspects of light-dependent development in Arabidopsis thaliana. phyB signaling is launched by the biologically active Pfr conformer and mediated by specific protein-protein interactions between phyB Pfr and its downstream regulatory partners, whereas conversion of Pfr to Pr terminates signaling. Here, we provide evidence that phyB is phosphorylated in planta at Ser-86 located in the N-terminal domain of the photoreceptor. Analysis of phyB-9 transgenic plants expressing phospho-mimic and nonphosphorylatable phyB-yellow fluorescent protein (YFP) fusions demonstrated that phosphorylation of Ser-86 negatively regulates all physiological responses tested. The Ser86Asp and Ser86Ala substitutions do not affect stability, photoconversion, and spectral properties of the photoreceptor, but light-independent relaxation of the phyB(Ser86Asp) Pfr into Pr, also termed dark reversion, is strongly enhanced both in vivo and in vitro. Faster dark reversion attenuates red light-induced nuclear import and interaction of phyB(Ser86Asp)-YFP Pfr with the negative regulator PHYTOCHROME INTERACTING FACTOR3 compared with phyB-green fluorescent protein. These data suggest that accelerated inactivation of the photoreceptor phyB via phosphorylation of Ser-86 represents a new paradigm for modulating phytochrome-controlled signaling.