939 resultados para sulfur dioxide
Resumo:
Titanium dioxide thin films with a rutile crystallinite size around 20 nm were fabricated by pulsed laser deposition (PLD) aided with an electron cyclotron resonance (ECR) plasma. With annealing treatment, the crystal size of the rutile crystallinite increased to 100 nm. The apatite-forming ability of the films as deposited and after annealing was investigated in a kind of simulated body fluid with ion concentrations nearly equal to those of human blood plasma. The results indicate that ECR aided PLD is an effective way both to fabricate bioactive titanium dioxide thin films and to optimize the bioactivity of titanium dioxide, with both crystal size and defects of the film taken into account.
Resumo:
In recent years fine and ultra fine particles emitted from internal combustion engines have attracted an increasing level of attention. This attention has arisen from epidemiological studies conducted by a number of research groups and pointing to the health effects resulting from inhalation of fine particles. Previous studies on the influence of fuel sulfur level on diesel vehicle emissions were mainly concentrated on particle mass emissions. This study aims at investigating the influence of the reduction of diesel fuel sulfur level on the emission and formation of nanoparticles
Resumo:
Considerable discussion has taken place during the last decade regarding the role of economic growth in determining environmental quality. Using data from 30 OECD countries for the period 1960-2003 and the nonparametric method of generalized additive models, which enables us to use flexible functional forms, this paper examines the environmental Kuznets curve hypothesis for carbon dioxide (CO2). We find that the reduction of coal share in energy use has a significant effect on CO2. Our results imply that economic growth is not sufficient to decrease CO2 emissions.
Resumo:
Carbon dioxide (CO2) is considered the most harmful of the greenhouse gases. Despite policy efforts, transport is the only sector experiencing an increase in the level of CO2 emissions and thereby possesses a major threat to sustainable development. In contrast, a reduced level of mobility has been associated with an increasing risk of being socially excluded. However, despite being the two key elements in transport policy, little effort has so far been made to investigate the links between CO2 emissions and social exclusion. This research contributes to this gap by analysing data from 157 weekly activity-travel diaries collected in rural Northern Ireland. CO2 emission levels were calculated using average speed models for different modes of transport. Regression analyses were then conducted to identify the socio-spatial patterns associated with these CO2 emissions, mode choice behaviour, and patterns of participation in activities. This research found that despite emitting a higher level of carbon dioxide, groups in rural areas possess the risk of being socially excluded due to their higher levels of mobility.
Resumo:
We report sensitive high mass resolution ion microprobe, stable isotopes (SHRIMP SI) multiple sulfur isotope analyses (32S, 33S, 34S) to constrain the sources of sulfur in three Archean VMS deposits—Teutonic Bore, Bentley, and Jaguar—from the Teutonic Bore volcanic complex of the Yilgarn Craton, Western Australia, together with sedimentary pyrites from associated black shales and interpillow pyrites. The pyrites from VMS mineralization are dominated by mantle sulfur but include a small amount of slightly negative mass-independent fractionation (MIF) anomalies, whereas sulfur from the pyrites in the sedimentary rocks has pronounced positive MIF, with ∆33S values that lie between 0.19 and 6.20‰ (with one outlier at −1.62‰). The wall rocks to the mineralization include sedimentary rocks that have contributed no detectable positive MIF sulfur to the VMS deposits, which is difficult to reconcile with the leaching model for the formation of these deposits. The sulfur isotope data are best explained by mixing between sulfur derived from a magmatic-hydrothermal fluid and seawater sulfur as represented by the interpillow pyrites. The massive sulfide lens pyrites have a weighted mean ∆33S value of −0.27 ± 0.05‰ (MSWD = 1.6) nearly identical with −0.31 ± 0.08‰ (MSWD = 2.4) for pyrites from the stringer zone, which requires mixing to have occurred below the sea floor. We employed a two-component mixing model to estimate the contribution of seawater sulfur to the total sulfur budget of the two Teutonic Bore volcanic complex VMS deposits. The results are 15 to 18% for both Teutonic Bore and Bentley, much higher than the 3% obtained by Jamieson et al. (2013) for the giant Kidd Creek deposit. Similar calculations, carried out for other Neoarchean VMS deposits give value between 2% and 30%, which are similar to modern hydrothermal VMS deposits. We suggest that multiple sulfur isotope analyses may be used to predict the size of Archean VMS deposits and to provide a vector to ore deposit but further studies are needed to test these suggestions.
Resumo:
Being simple, inexpensive, scalable and environmentally friendly, microporous biomass biochars have been attracting enthusiastic attention for application in lithium-sulfur (Li-S) batteries. Herein, porous bamboo biochar is activated via a KOH/annealing process that creates a microporous structure, boosts surface area and enhances electronic conductivity. The treated sample is used to encapsulate sulfur to prepare a microporous bamboo carbon-sulfur (BC-S) nanocomposite for use as the cathode for Li-S batteries for the first time. The BC-S nanocomposite with 50 wt.% sulfur content delivers a high initial capacity of 1,295 mA·h/g at a low discharge rate of 160 mA/g and high capacity retention of 550 mA·h/g after 150 cycles at a high discharge rate of 800 mA/g with excellent coulombic efficiency (⩾95%). This suggests that the BC-S nanocomposite could be a promising cathode material for Li-S batteries.
Resumo:
Amorphous carbon-sulfur (a-C:S) composite films were prepared by vapor phase pyrolysis technique. The structural changes in the a-C:S films were investigated by electron microscopy. A powder X-ray diffraction (XRD) study depicts the two-phase nature of a sulfur-incorporated a-C system. The optical bandgap energy shows a decreasing trend with an increase in the sulfur content and preparation temperature. This infers a sulfur incorporation and pyrolysis temperature induced reduction in structural disorder or increase in sp (2) or pi-sites. The presence of sulfur (S 2p) in the a-C:S sample is analyzed by the X-ray photoelectron spectroscopy (XPS). The sp (3)/sp (2) hybridization ratio is determined by using the XPS C 1s peak fitting, and the results confirm an increase in sp (2) hybrids with sulfur addition to a-C. The electrical resistivity variation in the films depends on both the sulfur concentration and the pyrolysis temperature.
Resumo:
$CO_2^{-}$ ions have been detected in the gas phase and measured by a mass spectrometer with a flight time of 30 µs in the positive column of carbondioxide glow discharge.
Resumo:
The steady-state kinetic constants for the catalysis of CO2 hydration by the sulfonamide-resistant and testosterone-induced carbonic anhydrase from the liver of the male rat has been determined by stopped-flow spectrophotometry. The turnover number was 2.6 ± 0.6 × 103 s− at 25 °C, and was invariant with pH ranging from 6.2 to 8.2 within experimental error. The Km at 25 °C was 5 ± 1 mImage , and was also pH independent. These data are in quantitative agreement with earlier findings of pH-independent CO2 hydration activity for the mammalian skeletal muscle carbonic anhydrase isozyme III. The turnover numbers for higher-activity isozymes I and II are strongly pH dependent in this pH range. Thus, the kinetic status of the male rat liver enzyme is that of carbonic anhydrase III. This finding is consistent with preliminary structural and immunologic data from other laboratories.
Resumo:
Increasing concentrations of atmospheric CO2 decrease stomatal conductance of plants and thus suppress canopy transpiration. The climate response to this CO2-physiological forcing is investigated using the Community Atmosphere Model version 3.1 coupled to Community Land Model version 3.0. In response to the physiological effect of doubling CO2, simulations show a decrease in canopy transpiration of 8%, a mean warming of 0.1K over the land surface, and negligible changes in the hydrological cycle. These climate responses are much smaller than what were found in previous modeling studies. This is largely a result of unrealistic partitioning of evapotranspiration in our model control simulation with a greatly underestimated contribution from canopy transpiration and overestimated contributions from canopy and soil evaporation. This study highlights the importance of a realistic simulation of the hydrological cycle, especially the individual components of evapotranspiration, in reducing the uncertainty in our estimation of climatic response to CO2-physiological forcing. Citation: Cao, L., G. Bala, K. Caldeira, R. Nemani, and G.Ban-Weiss (2009), Climate response to physiological forcing of carbon dioxide simulated by the coupled Community Atmosphere Model (CAM3.1) and Community Land Model (CLM3.0).
Resumo:
Polioencephalomalacia was diagnosed histologically in cattle from two herds on the Darling Downs, Queensland, during July-August 2007. In the first incident, 8 of 20 18-month-old Aberdeen Angus steers died while grazing pastures comprising 60% Sisymbrium irio (London rocket) and 40% Capsella bursapastoris (shepherd's purse). In the second incident, 2 of 150 mixed-breed adult cattle died, and another was successfully treated with thiamine, while grazing a pasture comprising almost 100% Raphanus raphanistrum (wild radish). Affected cattle were either found dead or comatose or were seen apparently blind and head-pressing in some cases. For both incidents, plant and water assays were used to calculate the total dietary sulfur content in dry matter as 0.62% and 1.01% respectively, both exceeding the recommended 0.5% for cattle eating more than 40% forage. Blood and tissue assays for lead were negative in both cases. No access to thiaminase, concentrated sodium ion or extrinsic hydrogen sulfide sources were identified in either incident. Below-median late summer and autumn rainfall followed by above-median unseasonal winter rainfall promoted weed growth at the expense of wholesome pasture species before these incidents.
Resumo:
The anomeric effect in S---C---S and O---C---S systems was studied by using closed-shell Hartree-Fock theory. A comparison of the STO-3G level with the 4–31G and 6–31G* levels was performed for the O---C---O system, and the STO-3G level found adequate for study of the anomeric effect. Optimization of bond lengths and angles was conducted at the STO-3G level and limited studies were made at the 4–31G level. The nature of the torsional potential curves is compared for the O---C---O, O---C---S, and S---C---S systems. The possible reasons for the decreased anomeric effect in sulfur systems are discussed.
Resumo:
Preparation of a novel type of titanium-substrate lead dioxide anode with enhanced electrocatalytic activity for electrosynthesis is described. It has been demonstrated that in the presence of a suitable surfactant in the coating solution, an adherent and mainly tetragonal form of lead dioxide is deposited on a platinized titanium surface such that the solution side of the coating is porous while the substrate side is compact. By an analysis of anodic charging curves and steady-state Tafel plots with such porous electrodes in contact with sodium sulphate solution, it has been proved that the electrochemically active area of these anodes is higher by more than an order of magnitude when compared to the area of conventional titanium-substrate lead dioxide anodes. The electrocatalytic activity is also thereby enhanced to a significant degree.
Resumo:
The kinetics and mechanism of anodic oxidation of chlorate ion to perchlorate ion on titanium-substrate lead dioxide electrodes have been investigated experimentally and theoretically. It has been demonstrated that the ionic strength of the solution has a marked effect on the rate of perchlorate formation, whereas the pH of the solution does not influence the reaction rate. Experimental data have also been obtained on the dependence of the reaction rate on the concentration of chlorate ion in the solution at constant ionic strength. With these data, diagnostic kinetic criteria have been deduced and compared with corresponding quantities predicted for various possible mechanisms including double layer effects on electrode kinetics. It has thus been shown that the most probable mechanisms for anodic chlorate oxidation on lead dioxide anodes involve the discharge of a water molecule in a one-electron transfer step to give an adsorbed hydroxyl radical as the rate-determining step for the overall reaction.
Resumo:
A new class of solid compounds, viz., bisthiocarbonohydrazones and thiosemicarbazones, have been found to be hypergolic with fuming nitric acid. The observed ignition delays of these hypergols have been compared with those of the monothiocarbonohydrazones-nitric acid systems and explained in terms of the chemical reactions-neutralization, oxidation, and nitration-occurring in the preignition stage. p-Nitrobenzoic acid, benzoic acid, benzaldehyde, sulfur trioxide, nitrogen dioxide, and nitrogen have been isolated as preignition reaction intermediates in the mono- and bisbenzaldehydethiocarbonohydrazone-nitric acid systems. A scheme of reactions occurring in the preignition stage is proposed based on the formation of these products.