921 resultados para sulfur chemistry
Resumo:
The sulfur resistance of low-loaded monometallic Pt catalysts and bimetallic Pt-W catalysts during the partial selective hydrogenation of styrene, a model compound of Pygas streams, was studied. The effect of metal impregnation sequence on the activity and selectivity was also evaluated. Catalysts were characterized by ICP, TPR, XRD, and XPS techniques. Catalytic tests with sulfur-free and sulfur-doped feeds were performed. All catalysts showed high selectivities (>98%) to ethylbenzene. Activity differences between the catalysts were mainly attributed to electronic effects due to the presence of different electron-rich species of Pt0 and electron-deficient species of Ptδ+. Pt0 promotes the cleavage of H2 while Ptδ+ the adsorption of styrene. The catalyst successively impregnated with W and Pt (WPt/Al) was more active and sulfur resistant than the catalyst prepared with an inverse impregnation order (PtW/Al). The higher poison resistance of WPt/Al was attributed to both steric and electronic effects.
Resumo:
In the sediments of the NW African continental margin the mainly biogenic carbonate constituents become increasingly diluted with terrigenous material as one approaches the coast, as indicated by the carbonate-CO2 content, the Al2O3/SiO2-ratios, and the presence of ammonia fixed to alumino-silicates, predominantly to illites. In the norther area of the investigation - off Cape Blanc and Cape Bojador . the terrigenous constituents are mainly quartz from the Sahara Desert, whereas in the south - off Senegal - more alumino-silicates as clay minerals are admixed with the carbonate constituents. The organic carbon content of the continental slope sediments off Senegal is higher than in samples of the continental rise or of the preservation of organic matter as a result of high production and relatively rapid sedimentation. The zone of manganese-oxide enrichment follows the redox potential of + 330 mV from the surface (0-5 cm) into the sediments (20-30 cm deep) at 2000--3000 m and 3700 m of water depths, respectively. At shallower water depths, low redox potentials preclude deposition of manganese oxides and cause their mobilization from the sediments. About 1/3 of the total sedimentary Zn and 1/4 of the Cu is associated with the carbonate mineral fraction, probably in calcium phosphate overgrowths as a result of the mineralization of phosphorus-containing organic matter. Besides the precipitation of calcium phosphate, the mineralization of organic matter mediated by bacterial sulfate reduction also results in calcium carbonate precipitation and the exchange of ammonia for potassium on illites. Because of these simultaneous reactions, the depth distribution of all mineralization constituents in the interstitial water can be determined using the actual molar carbon-to-nitrogen-to phosphorus ratios of the sedimentary organic matter. The amount of sulfide sulfur in this process indicates the predominance of bacterial sulfate reduction in the sediments off NW Africa. This process also preferentially decomposes nitrogen- and phosphorus-containing organic compounds so organic matter deficient in these elements is characteristic for the rapidly accumulating sediments than today, indicating there was increased production of organic carbon compounds and more favorable conditions of their preservations. During the last interglacial times conditions were similar to those to today. This differentiation with time has also been observed in sediments from the Argentine Basin and from slope off South India indicating perhaps world-wide environmental changes throughout Late Quaternary times.
Resumo:
Interstitial waters recovered during Leg 38 show large changes in major ion composition and also in oxygen isotope composition. Increases in Ca[++] and Sr[++] and decreases in K[+], Mg[++], and O18/O16 are interpreted in terms of extensive diagenesis of terrigenous, volcanic, or basaltic igneous materials in the sediments and underlying basalts. Slight, but well-established increases in chlorinity with depth indicate that these postulated weathering reactions involve uptake of water to a measurable extent. Interstitial waters from sites drilled on the Inner Voring Plateau suggest the infusion of fresh waters by aquifers from the mainland of Norway.
Resumo:
The fluffy layer was sampled repeatedly during nine expeditions between October 1996 and December 1998 at four stations situated along a S-N-transect from the Oder Estuary to the Arkona Basin. Geochemical and mineralogical analyses of the fluff show regional differences (trends) in composition, attributed to provenance and to hydrographical conditions along their transport pathways. Temporal variability is very high at the shallow water station of the estuary, and decreases towards the deeper stations in the north. In the shallow water area, intensive resuspension of the fluff due to wind-driven waves and currents leads to an average residence time of only one to two days. Near-bottom lateral transport of the fluff is the main process that transfers the fine grained material, containing both nutrients and contaminants, from the coastal zone into the deeper basins of the Baltic Sea. Seasonal effects (e.g. biogenic production in relation to trace metal variation) are observed at the Tromper Wiek station, where the residence time of the fluffy material is in the scale of seasons. Thus, the fluffy layer offers suitable material for environmental monitoring programs.
Resumo:
Bibliographical footnotes.
Resumo:
Reduced organic sulfur (ROS) compounds are environmentally ubiquitous and play an important role in sulfur cycling as well as in biogeochemical cycles of toxic metals, in particular mercury. Development of effective methods for analysis of ROS in environmental samples and investigations on the interactions of ROS with mercury are critical for understanding the role of ROS in mercury cycling, yet both of which are poorly studied. Covalent affinity chromatography-based methods were attempted for analysis of ROS in environmental water samples. A method was developed for analysis of environmental thiols, by preconcentration using affinity covalent chromatographic column or solid phase extraction, followed by releasing of thiols from the thiopropyl sepharose gel using TCEP and analysis using HPLC-UV or HPLC-FL. Under the optimized conditions, the detection limits of the method using HPLC-FL detection were 0.45 and 0.36 nM for Cys and GSH, respectively. Our results suggest that covalent affinity methods are efficient for thiol enrichment and interference elimination, demonstrating their promising applications in developing a sensitive, reliable, and useful technique for thiol analysis in environmental water samples. The dissolution of mercury sulfide (HgS) in the presence of ROS and dissolved organic matter (DOM) was investigated, by quantifying the effects of ROS on HgS dissolution and determining the speciation of the mercury released from ROS-induced HgS dissolution. It was observed that the presence of small ROS (e.g., Cys and GSH) and large molecule DOM, in particular at high concentrations, could significantly enhance the dissolution of HgS. The dissolved Hg during HgS dissolution determined using the conventional 0.22 μm cutoff method could include colloidal Hg (e.g., HgS colloids) and truly dissolved Hg (e.g., Hg-ROS complexes). A centrifugal filtration method (with 3 kDa MWCO) was employed to characterize the speciation and reactivity of the Hg released during ROS-enhanced HgS dissolution. The presence of small ROS could produce a considerable fraction (about 40% of total mercury in the solution) of truly dissolved mercury (< 3 kDa), probably due to the formation of Hg-Cys or Hg-GSH complexes. The truly dissolved Hg formed during GSH- or Cys-enhanced HgS dissolution was directly reducible (100% for GSH and 40% for Cys) by stannous chloride, demonstrating its potential role in Hg transformation and bioaccumulation.
Resumo:
The enzyme S-adenosyl-L-homocysteine (AdoHcy) hydrolase effects hydrolytic cleavage of AdoHcy to adenosine (Ado) and L-homocysteine (Hcy). The cellular levels of AdoHcy and Hcy are critical because AdoHcy is a potent feedback inhibitor of crucial transmethylation enzymes. Also, elevated plasma levels of Hcy in humans have been shown to be a risk factor in coronary artery disease. ^ On the basis of the previous finding that AdoHcy hydrolase is able to add the enzyme-sequestered water molecule across the 5',6'-double bond of (halo or dihalohomovinyl)-adenosines causing covalent binding inhibition, we designed and synthesized AdoHcy analogues with the 5',6'-olefin motif incorporated in place of the carbon-5' and sulfur atoms. From the available synthetic methods we chose two independent approaches: the first approach was based on the construction of a new C5'-C6' double bond via metathesis reactions, and the second approach was based on the formation of a new C6'-C7' single bond via Pd-catalyzed cross-couplings. Cross-metathesis of the suitably protected 5'-deoxy-5'-methyleneadenosine with racemic 2-amino-5-hexenoate in the presence of Hoveyda-Grubb's catalyst followed by standard deprotection afforded the desired analogue as 5' E isomer of the inseparable mixture of 9'R/S diastereomers. Metathesis of chiral homoallylglycine [(2S)-amino-5-hexenoate] produced AdoHcy analogue with established stereochemistry E at C5'atom and S at C9' atom. The 5'-bromovinyl analogue was synthesized using the bromination-dehydrobromination strategy with pyridinium tribromide and DBU. ^ Since literature reports on the Pd-catalyzed monoalkylation of dihaloalkenes (Csp2-Csp3 coupling) were scarce, we were prompted to undertake model studies on Pd-catalyzed coupling between vinyl dihalides and alkyl organometallics. The 1-fluoro-1-haloalkenes were found to undergo Negishi couplings with alkylzinc bromides to give multisubstituted fluoroalkenes. The alkylation was trans-selective affording pure Z-fluoroalkenes. The highest yields were obtained with PdCl 2(dppb) catalyst, but the best stereochemical outcome was obtained with less reactive Pd(PPh3)4. Couplings of 1,1-dichloro-and 1,1-dibromoalkenes with organozinc reagents resulted in the formation of monocoupled 1-halovinyl product. ^