971 resultados para steady 2D Navier-Stokes equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical simulation of an oil slick spreading on still and wavy surfaces is described in this paper. The so-called sigma transformation is used to transform the time-varying physical domain into a fixed calculation domain for the water wave motions and, at the same time, the continuity equation is changed into an advection equation of wave elevation. This evolution equation is discretized by the forward time and central space scheme, and the momentum equations by the projection method. A damping zone is set up in front of the outlet boundary coupled with a Sommerfeld-Orlanski condition at that boundary to minimize the wave reflection. The equations for the oil slick are depth-averaged and coupled with the water motions when solving numerically. As examples, sinusoidal and solitary water waves, the oil spread on a smooth plane and on still and wavy water surfaces are calculated to examine the accuracy of simulating water waves by Navier-Stokes equations, the effect of damping zone on wave reflection and the precise structures of oil spread on waves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct numerical simulations of a spatially evolving supersonic flat-plate turbulent boundary layer flow with free Mach number M = 2.25 and Reynolds number Re = 365000/in are performed. The transition process from laminar to turbulent flow is obtained by solving the three-dimensional compressible Navier-Stokes, equations, using high-order accurate difference schemes. The obtained statistical results agree well with the experimental and theoretical data. From the numerical results it can be seen that the transition process under the considered conditions is the process which skips the Tolimien-Schlichting instability and the second instability through the instability of high gradient shear layer and becomes of laminar flow breakdown. This means that the transition process is a bypass-type transition process. The spanwise asymmetry of the disturbance locally upstream imposed is important to induce the bypass-type transition. Furthermore, with increasing the time disturbance frequency the transition will delay. When the time disturbance frequency is large enough, the transition will disappear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematically numerical study of the sinusoidally oscillating viscous flow around a circular cylinder was performed to investigate vortical instability by solving the three-dimensional incompressible Navier-Stokes equations. The transition from two- to three-dimensional flow structures along the axial direction due to the vortical instability appears, and the three-dimensional structures lie alternatively on the two sides of the cylinder. Numerical study has been taken for the Keulegan-Carpenter( KC) numbers from 1 to 3.2 and frequency parameters from 100 to 600. The force behaviors are also studied by solving the Morison equation. Calculated results agree well with experimental data and theoretical prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large-eddy simulation with transitional structure function(TSF) subgrid model we previously proposed was performed to investigate the turbulent flow with thermal influence over an inhomogeneous canopy, which was represented as alternative large and small roughness elements. The aerodynamic and thermodynamic effects of the presence of a layer of large roughness elements were modelled by adding a drag term to the three-dimensional Navier-Stokes equations and a heat source/sink term to the scalar equation, respectively. The layer of small roughness elements was simply treated using the method as described in paper (Moeng 1984, J. Atmos Sci. 41, 2052-2062) for homogeneous rough surface. The horizontally averaged statistics such as mean vertical profiles of wind velocity, air temperature, et al., are in reasonable agreement with Gao et al.(1989, Boundary layer meteorol. 47, 349-377) field observation (homogeneous canopy). Not surprisingly, the calculated instantaneous velocity and temperature fields show that the roughness elements considerably changed the turbulent structure within the canopy. The adjustment of the mean vertical profiles of velocity and temperature was studied, which was found qualitatively comparable with Belcher et al. (2003, J Fluid Mech. 488, 369-398)'s theoretical results. The urban heat island(UHI) was investigated imposing heat source in the region of large roughness elements. An elevated inversion layer, a phenomenon often observed in the urban area (Sang et al., J Wind Eng. Ind. Aesodyn. 87, 243-258)'s was successfully simulated above the canopy. The cool island(CI) was also investigated imposing heat sink to simply model the evaporation of plant canopy. An inversion layer was found very stable and robust within the canopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a previous study [M. Hameed, J. Fluid Mech. 594, 307 (2008)] the authors investigated the influence of insoluble surfactant on the evolution of a stretched, inviscid bubble surrounded by a viscous fluid via direct numerical simulation of the Navier-Stokes equations, and showed that the presence of surfactant can cause the bubble to contract and form a quasisteady slender thread connecting parent bubbles, instead of proceeding directly toward pinch-off as occurs for a surfactant-free bubble. Insoluble surfactant significantly retards pinch-off and the thread is stabilized by a balance between internal pressure and reduced capillary pressure due to a high concentration of surfactant that develops during the initial stage of contraction. In the present study we investigate the influence of surfactant solubility on thread formation. The adsorption-desorption kinetics for solubility is in the diffusion controlled regime. A long-wave model for the evolution of a capillary jet is also studied in the Stokes flow limit, and shows dynamics that are similar to those of the evolving bubble. With soluble surfactant, depending on parameter values, a slender thread forms but can pinch-off later due to exchange of surfactant between the interface and exterior bulk flow. © 2009 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of numerical analyses for momentum and heat transfer For a 3 in. (0.075 m) diameter Liquid Encapsulant Czochralski (LEC) growth of single-crystal GaAs with or without all axial magnetic field was carried Out using the finite-element method. The analyses assume a pseudosteady axisymmetric state with laminar floats. Convective and conductive heat transfers. radiative heat transfer between diffuse surfaces and the Navier-Stokes equations for both melt and encapsulant and electric current stream function equations Cor melt and crystal Lire considered together and solved simultaneously. The effect of the thickness of encapsulant. the imposed magnetic field strength as well as the rotation rate of crystal and crucible on the flow and heat transfer were investigated. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

摄动有限差分(PFD)方法从一阶迎风差分格式出发,将差分系数展开为网格步长的幂级数,通过提高修正微分方程的逼近精度来获得更高精度的差分格式。由于格式基于一阶迎风格式,因此具有迎风效应、网格节点少等特点。本文首先通过对Burgers方程的摄动差分格式的推导,将摄动有限差分格式引入时间相关法的计算,并构造了守恒形式的摄动有限差分格式,然后推广到一维Navier-Stokes方程组的计算。数值比较研究表明:本文构造的NS方程摄动有限差分格式具有比一阶迎风较高的精度和分辨率,而且保持了一阶迎风格式的无振荡性质。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To describe the various complex mechanisms of the dissipative dynamical system between waves, currents, and bottoms in the nearshore region that induce typically the wave motion on large-scale variation of ambient currents, a generalized wave action equation for the dissipative dynamical system in the nearshore region is developed by using the mean-flow equations based on the Navier-Stokes equations of viscous fluid, thus raising two new concepts: the vertical velocity wave action and the dissipative wave action, extending the classical concept, wave action, from the ideal averaged flow conservative system into the real averaged flow dissipative system (that is, the generalized conservative system). It will have more applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct numerical simulation (DNS) of supercritical CO2 turbulent channel flow has been performed to investigate the heat transfer mechanism of supercritical fluid. In the present DNS, full compressible Navier-Stokes equations and Peng-Robison state equation are solved. Due to effects of the mean density variation in the wall normal direction, mean velocity in the cooling region becomes high compared with that in the heating region. The mean width between high-and low-speed streaks near the wall decreases in the cooling region, which means that turbulence in the cooling region is enhanced and lots of fine scale eddies are created due to the local high Reynolds number effects. From the turbulent kinetic energy budget, it is found that compressibility effects related with pressure fluctuation and dilatation of velocity fluctuation can be ignored even for supercritical condition. However, the effect of density fluctuation on turbulent kinetic energy cannot be ignored. In the cooling region, low kinematic viscosity and high thermal conductivity in the low speed streaks modify fine scale structure and turbulent transport of temperature, which results in high Nusselt number in the cooling condition of the supercritical CO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article the UDF script file in the Fluent software was rewritten as the "connecting file" for the Fluent and the ANSYS/ABAQUS in order that the joined file can be used to do aero-elastic computations. In this way the fluid field is computed by solving the Navier-Stokes equations and the structure movement is integrated by the dynamics directly. An analysis of the computed results shows that this coupled method designed for simulating aero-elastic systems is workable and can be used for the other fluid-structure interaction problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct numerical simulation of transition How over a blunt cone with a freestream Mach number of 6, Reynolds number of 10,000 based on the nose radius, and a 1-deg angle of attack is performed by using a seventh-order weighted essentially nonoscillatory scheme for the convection terms of the Navier-Stokes equations, together with an eighth-order central finite difference scheme for the viscous terms. The wall blow-and-suction perturbations, including random perturbation and multifrequency perturbation, are used to trigger the transition. The maximum amplitude of the wall-normal velocity disturbance is set to 1% of the freestream velocity. The obtained transition locations on the cone surface agree well with each other far both cases. Transition onset is located at about 500 times the nose radius in the leeward section and 750 times the nose radius in the windward section. The frequency spectrum of velocity and pressure fluctuations at different streamwise locations are analyzed and compared with the linear stability theory. The second-mode disturbance wave is deemed to be the dominating disturbance because the growth rate of the second mode is much higher than the first mode. The reason why transition in the leeward section occurs earlier than that in the windward section is analyzed. It is not because of higher local growth rate of disturbance waves in the leeward section, but because the growth start location of the dominating second-mode wave in the leeward section is much earlier than that in the windward section.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a numerical study on the thermocapillary migration of drops. The Navier-Stokes equations coupled with the energy conservation equation are solved by the finite-difference front-tracking scheme. The axisymmetric model is adopted in Our simulations, and the drops are assumed to be perfectly spherical and nondeformable. The benchmark simulation starts from the classical initial condition with a uniform temperature gradient. The detailed discussions and physical explanations of migration phenomena are presented for the different values of (1) the Marangoni numbers and Reynolds numbers of continuous phases and drops and (2) the ratios of drop densities and specific heats to those of continuous phases. It is found that fairly large Marangoni numbers may lead to fluctuations in drop velocities at the beginning part of simulations. Finally, we also discuss the influence of initial conditions on the thermocapillary migrations. (C) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an unstructured Chimera mesh method is used to compute incompressible flow around a rotating body. To implement the pressure correction algorithm on unstructured overlapping sub-grids, a novel interpolation scheme for pressure correction is proposed. This indirect interpolation scheme can ensure a tight coupling of pressure between sub-domains. A moving-mesh finite volume approach is used to treat the rotating sub-domain and the governing equations are formulated in an inertial reference frame. Since the mesh that surrounds the rotating body undergoes only solid body rotation and the background mesh remains stationary, no mesh deformation is encountered in the computation. As a benefit from the utilization of an inertial frame, tensorial transformation for velocity is not needed. Three numerical simulations are successfully performed. They include flow over a fixed circular cylinder, flow over a rotating circular cylinder and flow over a rotating elliptic cylinder. These numerical examples demonstrate the capability of the current scheme in handling moving boundaries. The numerical results are in good agreement with experimental and computational data in literature. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose and analyse a new model of thermocapillary convection with evaporation in a cavity subjected to horizontal temperature gradient, rather than the previously studied model without evaporation. The pure liquid layer with a top free surface in contact with its own vapour is considered in microgravity condition. The computing programme developed for simulating this model integrates the two-dimensional, time-dependent Navier-Stokes equations and energy equation by a second-order accurate projection method. We focus on the coupling of evaporation and thermocapillary convection by investigating the influence of evaporation Biot number and Marangoni number on the interfacial mass and heat transfer. Three different regimes of the coupling mechanisms are found and explained from our numerical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flow past a square-section cylinder with a geometric disturbance is investigated by numerical simulations. The extra terms, due to the introduction of mapping transformation simulating the effect of disturbance into the transformed Navier-Stokes equations, are correctly derived, and the incorrect ones in the previous literature are pointed out and analyzed. Furthermore, the relationship between the vorticity, especially on the cylinder surface, and the disturbance is derived and explained theoretically. The computations are performed at two Reynolds numbers of 100 and 180 and three amplitudes of waviness of 0.006, 0.025 and 0.167 with another aim to explore the effects of different Reynolds numbers and disturbance on the vortex dynamics in the wake and forces on the body. Numerical results have shown that, at the mild waviness of 0.025, the Karman vortex shedding is suppressed completely for Re = 100, while the forced vortex dislocation is appeared in the near wake at the Reynolds number of 180. The drag reduction is up to 21.6% at Re = 100 and 25.7% at Re = 180 for the high waviness of 0.167 compared with the non-wavy cylinder. The lift and the Strouhal number varied with different Reynolds numbers and the wave steepness are also obtained.