944 resultados para sprinkler irrigation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was devised to evaluate influences of irrigation and fertigation practices on Vitis vinifera and Vitis labruscana grapes in the Niagara Peninsula. A modified FAO Penman- Monteith evapotranspiration formula was used to calculate water budgets and schedule irrigations. Five deficit irrigation treatments (non-irrigated control; deficits imposed postbloom, lag phase, and veraison; fiiU season irrigation) were employed in a Chardonnay vineyard. Transpiration rate (4-7 /xg H20/cmVs) and soil moisture data demonstrated that the control and early deficit treatments were under water stress throughout the season. The fiiU season irrigation treatment showed an 18% (2001) and 19% (2002) increase in yield over control due to increased berry weight. Soluble solids and wine quality were not compromised, and the fiiU season treatment showed similar or higher °Brix than all other treatments. Berry titratable acidity andpH also fell within acceptable levels for all five treatments. Irrigation/fertigation timing trials were conducted on Concord and Niagara vines in 2001- 02. The six Concord treatments consisted of a non-irrigated control, irrigation fi^om Eichhom and Lorenz (EL) stage 12 to harvest, and four fertigation treatments which applied 70 kg/ha urea. The nine Niagara treatments included a non-irrigated control, two irrigated treatments (ceasing at veraison and harvest, respectively) and six fertigation treatments of various durations. Slight yield increases (ca. 10% in Concord; 29% in Niagara) were accompanied by small decreases in soluble solids (1.5°Brix), and methyl anthranilate concentrations. Transpiration rate and soil moisture (1 1.9-16.3%) data suggested that severe water stress was present in these Toledo clay based vineyards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Niagara Peninsula of Ontario is the largest viticultural area in Canada. Although it is considered to be a cool and wet region, in the last decade many water stress events occurred during the growing seasons with negative effects on grape and wine quality. This study was initiated to understand and develop the best strategies for water management in vineyards and those that might contribute to grape maturity advancement. The irrigation trials investigated the impact of time of initiation (fruit set, lag phase and veraison), water replacement level based on theoretical loss through crop evapotranspiration (ETc; 100,50 and 25%) and different irrigation strategies [partial root zone drying (PRD) versus regulated deficit irrigation (RD!)] on grape composition and wine sensory profiles. The irrigation experiments were conducted in a commercial vineyard (Lambert Vineyards Inc.) located in Niagara-on-the-Lake, Ontario, from 2005 through 2009. The two experiments that tested the combination of different water regimes and irrigation time initiation were set up in a randomized block design as follows: Baco noir - three replicates x 10 treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set, lag phase and veraison) + control]; Chardonnay - three replicates x seven treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set and veraison) + control]. The experiments that tested different irrigation strategies were set up on two cultivars as follows: Sauvignon blanc - four replicates x four treatments [control, fully irrigated (100% ETc), PRD (100% ETc) and RDI (25% ETc)]; Cabemet Sauvignon - four replicates x five treatments [control, fully irrigated (100% ETc), PRD (100% ETc), RDI (50% ETc) and RDI (25% ETc)]. The controls in each experiment were nonirrigated. The irrigation treatments were compared for many variables related to soil water status, vine physiology, berry composition, wine sensory profile, and hormone composition [(abscisic acid (ABA) and its catabolites]. Soil moisture profile was mostly affected by irrigation treatments between 20 and 60 em depth depending on the grapevine cultivar and the regime of water applied. Overall soil moisture was consistently higher throughout the season in 100 and 50% ETc compare to the control. Transpiration rates and leaf temperature as well as shoot growth rate were the most sensitive variables to soil water status. Drip irrigation associated with RDI treatments (50% ETc and 25% ETc) had the most beneficial effects on vine physiology, fruit composition and wine varietal typicity, mainly by maintaining a balance between vegetative and reproductive parts of the vine. Neither the control nor the 100 ETc had overall a positive effect on grape composition and wine sensory typicity. The time of irrigation initiation affected the vine physiology and grape quality, the most positive effect was found in treatments initiated at lag phase and veraison. RDI treatments were overall more consistent in their positive effect on grape composition and wine varietal typicity comparing to PRD treatment. The greatest difference between non-irrigated and irrigated vines in most of the variables studied was found in 2007, the driest and hottest season of the experimental period. Soil water status had a greater and more consistent effect on red grapevine cultivars rather than on white winegrape cultivars. To understand the relationships among soil and plant water status, plant physiology and the hormonal profiles associated with it, abscisic acid (ABA) and its catabolites [phaseic acid (PA), dihydrophaseic acid (DPA), 7-hydroxy-ABA (TOH-ABA), 8' -hydroxy-ABA, neophaseic acid and abscisic acid glucose ester (ABA-GE)] were analyzed in leaves and berries from the Baco noir and Chardonnay irrigation trials over two growing seasons. ABA and some of its catabolites accurately described the water status in the vines. Endogenous ABA and some of its catabolites were strongly affected in Baco noir and Chardonnay by both the water regime (i.e. ET level) and timing of irrigation initiation. Chardonnay grapevines produced less ABA in both leaves and berries compared to Baco noir, which indicated that ABA synthesis is also cultivar dependant. ABA-GE was the main catabolite in treatments with high water deficits, while PA and DPA were higher in treatments with high water status, suggesting that the vine produced more ABA-GE under water deficits to maintain rapid control of the stomata. These differences between irrigation treatments with respect to ABA and catabolites were particularly noticeable in the dry 2007 season. Two trials using exogenous ABA investigated the effect of different concentrations of ABA and organs targeted for spraying, on grape maturation and berry composition of Cabemet Sauvignon grapevines, in two cool and wet seasons (2008-2009). The fIrst experiment consisted of three replicates x three treatments [(150 and 300 mg/L, both applications only on clusters) + untreated control] while the second experiment consisted in three replicates x four treatments [(full canopy, only clusters, and only leaves sprayed with 300 ppm ABA) + untreated control]. Exogenous ABA was effective in hastening veraison, and improving the composition of Cabemet Sauvignon. Ability of ABA to control the timing of grape berry maturation was dependant on both solution concentration and the target organ. ABA affected not only fruit composition but also yield components. Berries treated with ABA had lower weight and higher skin dry mass, which constitutes qualitative aspects desired in the wine grapes. Temporal advancement of ripening through hormonal control can lead to earlier fruit maturation, which is a distinct advantage in cooler areas or areas with a high risk of early frost occurrence. Exogenous ABA could provide considerable benefits to wine industry in terms of grape composition, wine style and schedule activities in the winery, particularly in wet and cool years. These trials provide the ftrst comprehensive data in eastern North America on the response of important hybrid and Vitis vinifera winegrape cultivars to irrigation management. Results from this study additionally might be a forward step in understanding the ABA metabolism, and its relationship with water status. Future research should be focused on ftnding the ABA threshold required to trigger the ripening process, and how this process could be controlled in cool climates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UANL

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UANL

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For millennia oasis agriculture has been the backbone of rural livelihood in the desertic Sultanate of Oman. However, little is known about the functioning of these oasis systems, in particular with respect to the C turnover. The objective was to determine the effects of crop, i.e. alfalfa, wheat and bare fallow on the CO2 evolution rate during an irrigation cycle in relation to changes in soil water content and soil temperature. The gravimetric soil water content decreased from initially 24% to approximately 16% within 7 days after irrigation. The mean CO2 evolution rates increased significantly in the order fallow (27.4 mg C m^−2 h^−1) < wheat (45.5 mg C m^−2 h^−1) < alfalfa (97.5 mg C m^−2 h^−1). It can be calculated from these data that the CO2 evolution rate of the alfalfa root system was nearly four times higher than the corresponding rate in the wheat root system. The decline in CO2 evolution rate, especially during the first 4 days after irrigation, was significantly related to the decline in the gravimetric water content, with r = 0.70. CO2 evolution rate and soil temperature at 5 cm depth were negatively correlated (r = -0.56,n = 261) due to increasing soil temperature with decreasing gravimetric water content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about plant biodiversity, irrigation management and nutrient fluxes as criteria to assess the sustainability of traditional irrigation agriculture in eastern Arabia. Therefore interdisciplinary studies were conducted over 4 yrs on flood-irrigated fields dominated by wheat (Triticum spp.), alfalfa (Medicago sativa L.) and date palm (Phoenix dactylifera L.) in two mountain oases of northern Oman. In both oases wheat landraces consisted of varietal mixtures comprising T. aestivum and T. durum of which at least two botanical varieties were new to science. During irrigation cycles of 6-9 days on an alfalfa-planted soil, volumetric water contents ranged from 30-13%. For cropland, partial oasis balances (comprising inputs of manure, mineral fertilizers, N2-fixation and irrigation water, and outputs of harvested products) were similar for both oases, with per hectare annual surpluses of 131 kg N, 37 kg P and 84 kg K at Balad Seet and of 136 kg N, 16 kg P and 66 kg K at Maqta. Respective palm grove surpluses, in contrast were with 303 kg N, 38 kg P, and 173 kg K ha^-1 yr^-1 much higher at Balad Seet than with 84 kg N, 14 kg P and 91 kg K ha^-1 yr^-1 at Maqta. The results show that the sustainability of these irrigated landuse systems depends on a high quality of the irrigation water with low Na but high CaCO3, intensive recycling of manure and an elaborate terrace structure with a well tailored water management system that allows adequate drainage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water shortage is one of the major constraints for production of horticultural crops in arid and semiarid regions. A field experiment was conducted to determine irrigation water and fertilizer use efficiency, growth and yield of tomato under clay pot irrigation at the experimental site of Sekota Dryland Agricultural Research Center, Lalibela, Ethiopia in 2009/10. The experiment comprised of five treatments including furrow irrigated control and clay pot irrigation with different plant population and fertilization methods, which were arranged in Randomized Complete Block Design with three replications. The highest total and marketable fruit yields were obtained from clay pot irrigation combined with application of nitrogen fertilizer with irrigation water irrespective of difference in plant population. The clay pot irrigation had seasonal water use of up to 143.71 mm, which resulted in significantly higher water use efficiency (33.62 kg m^-3) as compared to the furrow irrigation, which had a seasonal water use of 485.50 mm, and a water use efficiency of 6.67 kg m^-3. Application of nitrogen fertilizer with irrigation water in clay pots improved fertilizer use efficiency of tomato by up to 52% than band application with furrow or clay pot irrigation. Thus, clay pot irrigation with 33,333 plants ha^-1 and nitrogen fertilizer application with irrigation water in clay pots was the best method for increasing the yield of tomato while economizing the use of water and nitrogen fertilizer in a semiarid environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The field experiments were conducted to compare the alternate partial root-zone irrigation (APRI) with and without black plastic mulch (BPM) with full root-zone irrigation (FRI) in furrow-irrigated okra (Abelmoschus esculentus L. Moench) at Bhubaneswar, India. APRI means that one of the two neighbouring furrows was alternately irrigated during consecutive watering. FRI was the conventional method where every furrow was irrigated during each watering. The used irrigation levels were 25% available soil moisture depletion (ASMD), 50% ASMD, and 75% ASMD. The plant growth and yield parameters were observed to be significantly (p < 0.05) higher with frequent irrigation (at 25% ASMD) under all irrigation strategies. However, APRI + BPM produced the maximum plant growth and yield using 22% and 56% less water over APRI without BPM and FRI, respectively. The highest pod yield (10025 kg ha^-1) was produced under APRI at 25% ASMD + BPM, which was statistically at par with the pod yield under APRI at 50% ASMD + BPM. Irrigation water use efficiency (IWUE), which indicates the pod yield per unit quantity of irrigation water, was estimated to be highest (12.3 kg m^-3) under APRI at 50% ASMD + BPM, followed by APRI at 25% ASMD + BPM. Moreover, the treatment APRI at 50% ASMD + BPM was found economically superior to other treatments, generating more net return (US $ 952 ha^-1) with higher benefit–cost ratio (1.70).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evapotranspiration (ET) is a complex process in the hydrological cycle that influences the quantity of runoff and thus the irrigation water requirements. Numerous methods have been developed to estimate potential evapotranspiration (PET). Unfortunately, most of the reliable PET methods are parameter rich models and therefore, not feasible for application in data scarce regions. On the other hand, accuracy and reliability of simple PET models vary widely according to regional climate conditions. The objective of the present study was to evaluate the performance of three temperature-based and three radiation-based simple ET methods in estimating historical ET and projecting future ET at Muda Irrigation Scheme at Kedah, Malaysia. The performance was measured by comparing those methods with the parameter intensive Penman-Monteith Method. It was found that radiation based methods gave better performance compared to temperature-based methods in estimation of ET in the study area. Future ET simulated from projected climate data obtained through statistical downscaling technique also showed that radiation-based methods can project closer ET values to that projected by Penman-Monteith Method. It is expected that the study will guide in selecting suitable methods for estimating and projecting ET in accordance to availability of meteorological data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moringa oleifera is becoming increasingly popular as an industrial crop due to its multitude of useful attributes as water purifier, nutritional supplement and biofuel feedstock. Given its tolerance to sub-optimal growing conditions, most of the current and anticipated cultivation areas are in medium to low rainfall areas. This study aimed to assess the effect of various irrigation levels on floral initiation, flowering and fruit set. Three treatments namely, a 900 mm (900IT), 600 mm (600IT) and 300 mm (300IT) per annum irrigation treatment were administered through drip irrigation, simulating three total annual rainfall amounts. Individual inflorescences from each treatment were tagged during floral initiation and monitored throughout until fruit set. Flower bud initiation was highest at the 300IT and lowest at the 900IT for two consecutive growing seasons. Fruit set on the other hand, decreased with the decrease in irrigation treatment. Floral abortion, reduced pollen viability as well as moisture stress in the style were contributing factors to the reduction in fruiting/yield observed at the 300IT. Moderate water stress prior to floral initiation could stimulate flower initiation, however, this should be followed by sufficient irrigation to ensure good pollination, fruit set and yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For over 1,000 years, the Balinese have developed a unique system of democratic and sustainable water irrigation. It has shaped the cultural landscapes of Bali and enables local communities to manage the ecology of terraced rice fields at the scale of whole watersheds. The Subak system has made the Balinese the most productive rice growers in Indonesia and ensures a high level of food sovereignty for a dense population on the volcanic island. The Subak system provides a vibrant example of a diverse, ecologically sustainable, economically productive and democratic water management system that is also characterized by its nonreliance on fossil fuel derivatives or heavy machinery. In 2012, UNESCO has recognized five rice terraces and their water temples as World Heritage site and supports its conservation and protection. However, the fragile Subak system is threatened for its complexity and interconnectedness by new agricultural practices and increasing tourism on the island.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emitter spacings of 0.3 to 0.6 m are commonly used for subsurface drip irrigation (SDI) of corn on the deep, silt loam soils of the U.S. Great Plains. Subsurface drip irrigation emitter spacings of 0.3, 0.6, 0.9 and 1.2 m were examined for the resulting differences in soil water redistribution, corn grain yield, yield components, seasonal water use, and water productivity in a 4‐year field study (2005 through 2008) at the Kansas State University Northwest Research‐Extension Center, Colby, Kansas. The results indicate that there is increased preferential water movement along the dripline (parallel) as compared to perpendicular to the dripline and that this phenomenon partially compensates for wider emitter spacings in terms of soil water redistribution. Corn yield and water productivity (WP) were not significantly affected by the emitter spacing with application of a full irrigation regime

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the ornamental plant production region of Girona (Spain), which is one of the largest of its kind in southern Europe, most of the surface is irrigated using wide blocked-end furrows. The objectives of this paper were: (1) to evaluate the irrigation scheduling methods used by ornamental plant producers; (2) to analyse different scenarios in order to assess how they affect irrigation performance; (3) to evaluate the risk of deep percolation; and (4) to calculate gross water productivity. A two-year study in a representative commercial field, planted with Prunus cerasifera ‘Nigra’, was carried out. The irrigation dose applied by the farmers was slightly smaller than the required water dose estimated by the use of two different methods: the first based on soil water content, and the second based on evapotranspiration. Distribution uniformity and application efficiency were high, with mean values above 87%. Soil water content measurements revealed that even at the end of the furrow, where the infiltrated water depth was greatest, more than 90% of the infiltrated water was retained in the shallowest 40 cm of the soil; accordingly, the risk of water loss due to deep percolation was minimal. Gross water productivity for ornamental tree production was € 11.70 m–3, approximately 20 times higher than that obtained with maize in the same region