958 resultados para specific antibodies
Resumo:
Malaria is a vector-borne disease that is considered to be one of the most serious public health problems due to its high global mortality and morbidity rates. Although multiple strategies for controlling malaria have been used, many have had limited impact due to the appearance and rapid dissemination of mosquito resistance to insecticides, parasite resistance to multiple antimalarial drug, and the lack of sustainability. Individuals in endemic areas that have been permanently exposed to the parasite develop specific immune responses capable of diminishing parasite burden and the clinical manifestations of the disease, including blocking of parasite transmission to the mosquito vector. This is referred to as transmission blocking (TB) immunity (TBI) and is mediated by specific antibodies and other factors ingested during the blood meal that inhibit parasite development in the mosquito. These antibodies recognize proteins expressed on either gametocytes or parasite stages that develop in the mosquito midgut and are considered to be potential malaria vaccine candidates. Although these candidates, collectively called TB vaccines (TBV), would not directly stop malaria from infecting individuals, but would stop transmission from infected person to non-infected person. Here, we review the progress that has been achieved in TBI studies and the development of TBV and we highlight their potential usefulness in areas of low endemicity such as Latin America.
Resumo:
Cerebrospinal fluid (CSF) samples from clinically diagnosed patients with detectable Angiostrongylus canto-nensis-specific antibodies (n = 10), patients with clinically suspected cases that tested negative for A. cantonensis-an-tibodies (n = 5) and patients with cerebral gnathostomiasis (n = 2) and neurocysticercosis (n = 2) were examined by a single-step polymerase chain reaction (PCR) method using the AC primers for the 66-kDa native protein gene. The PCR method detected A. cantonensis DNA in CSF samples from four of 10 serologically confirmed angiostrongyliasis cases. The PCR results were negative for the remaining CSF samples. The nucleotide sequences of three positive CSF-PCR samples shared 98.8-99.2% similarity with the reference sequence of A. cantonensis. These results indicate the potential application of this PCR assay with clinical CSF samples for additional support in the confirmation of eosinophilic meningitis due to A. cantonensis.
Resumo:
Acute infection with Trypanosoma cruzi results in intense myocarditis, which progresses to a chronic, asymptomatic indeterminate form. The evolution toward this chronic cardiac form occurs in approximately 30% of all cases of T. cruzi infection. Suppression of delayed type hypersensitivity (DTH) has been proposed as a potential explanation of the indeterminate form. We investigated the effect of cyclophosphamide (CYCL) treatment on the regulatory mechanism of DTH and the participation of heart interstitial dendritic cells (IDCs) in this process using BALB/c mice chronically infected with T. cruzi. One group was treated with CYCL (20 mg/kg body weight) for one month. A DTH skin test was performed by intradermal injection of T. cruzi antigen (3 mg/mL) in the hind-footpad and measured the skin thickness after 24 h, 48 h and 72 h. The skin test revealed increased thickness in antigen-injected footpads, which was more evident in the mice treated with CYCL than in those mice that did not receive treatment. The thickened regions were characterised by perivascular infiltrates and areas of necrosis. Intense lesions of the myocardium were present in three/16 cases and included large areas of necrosis. Morphometric evaluation of lymphocytes showed a predominance of TCD8 cells. Heart IDCs were immunolabelled with specific antibodies (CD11b and CD11c) and T. cruzi antigens were detected using a specific anti-T. cruzi antibody. Identification of T. cruzi antigens, sequestered in these cells using specific anti-T. cruzi antibodies was done, showing a significant increase in the number of these cells in treated mice. These results indicate that IDCs participate in the regulatory mechanisms of DTH response to T. cruzi infection.
Resumo:
Blood infection by the simian parasite, Plasmodium simium, was identified in captive (n = 45, 4.4%) and in wild Alouatta clamitans monkeys (n = 20, 35%) from the Atlantic Forest of southern Brazil. A single malaria infection was symptomatic and the monkey presented clinical and haematological alterations. A high frequency of Plasmodium vivax-specific antibodies was detected among these monkeys, with 87% of the monkeys testing positive against P. vivax antigens. These findings highlight the possibility of malaria as a zoonosis in the remaining Atlantic Forest and its impact on the epidemiology of the disease.
Resumo:
As the morphological determination of living individuals of the two sibling species S. araneus and S. coronatus is not possible, we have tested two biochemical methods to determine these shrews in ecological studies. After producing specific antibodies by rabbits, we performed an immunological test on 25 individuals. With this first method, a correct determination was achieved in 76% of the cases only. The second method proved very successful: a polyacrylamide gel electrophoresis showed a systematic difference for albumin (73 individuals analyzed). According to our experience, the necessary blood sampling (10-20 μl) seems harmless for the shrews
Resumo:
Hepatitis C virus (HCV) envelope protein 2 (E2) is involved in viral binding to host cells. The aim of this work was to produce recombinant E2B and E2Y HCV proteins in Escherichia coli and Pichia pastoris, respectively, and to study their interactions with low-density lipoprotein receptor (LDLr) and CD81 in human umbilical vein endothelial cells (HUVEC) and the ECV304 bladder carcinoma cell line. To investigate the effects of human LDL and differences in protein structure (glycosylated or not) on binding efficiency, the recombinant proteins were either associated or not associated with lipoproteins before being assayed. The immunoreactivity of the recombinant proteins was analysed using pooled serum samples that were either positive or negative for hepatitis C. The cells were immunophenotyped by LDLr and CD81 using flow cytometry. Binding and binding inhibition assays were performed in the presence of LDL, foetal bovine serum (FCS) and specific antibodies. The results revealed that binding was reduced in the absence of FCS, but that the addition of human LDL rescued and increased binding capacity. In HUVEC cells, the use of antibodies to block LDLr led to a significant reduction in the binding of E2B and E2Y. CD81 antibodies did not affect E2B and E2Y binding. In ECV304 cells, blocking LDLr and CD81 produced similar effects, but they were not as marked as those that were observed in HUVEC cells. In conclusion, recombinant HCV E2 is dependent on LDL for its ability to bind to LDLr in HUVEC and ECV304 cells. These findings are relevant because E2 acts to anchor HCV to host cells; therefore, high blood levels of LDL could enhance viral infectivity in chronic hepatitis C patients.
Resumo:
This study was conducted to analyse the course and the outcome of the liver disease in the co-infected animals in order to evaluate a possible synergic effect of human parvovirus B19 (B19V) and hepatitis A virus (HAV) co-infection. Nine adult cynomolgus monkeys were inoculated with serum obtained from a fatal case of B19V infection and/or a faecal suspension of acute HAV. The presence of specific antibodies to HAV and B19V, liver enzyme levels, viraemia, haematological changes, and necroinflammatory liver lesions were used for monitoring the infections. Seroconversion was confirmed in all infected groups. A similar pattern of B19V infection to human disease was observed, which was characterised by high and persistent viraemia in association with reticulocytopenia and mild to moderate anaemia during the period of investigation (59 days). Additionally, the intranuclear inclusion bodies were observed in pro-erythroblast cell from an infected cynomolgus and B19V Ag in hepatocytes. The erythroid hypoplasia and decrease in lymphocyte counts were more evident in the co-infected group. The present results demonstrated, for the first time, the susceptibility of cynomolgus to B19V infection, but it did not show a worsening of liver histopathology in the co-infected group.
Resumo:
Generation of tumor-antigen specific CD4(+) T-helper (T(H)) lines through in vitro priming is of interest for adoptive cell therapy of cancer, but the development of this approach has been limited by the lack of appropriate tools to identify and isolate low frequency tumor antigen-specific CD4(+) T cells. Here, we have used recently developed MHC class II/peptide tetramers incorporating an immunodominant peptide from NY-ESO-1 (ESO), a tumor antigen frequently expressed in different human solid and hematologic cancers, to implement an in vitro priming platform allowing the generation of ESO-specific T(H) lines. We isolated phenotypically defined CD4(+) T-cell subpopulations from circulating lymphocytes of DR52b(+) healthy donors by flow cytometry cell sorting and stimulated them in vitro with peptide ESO(119-143), autologous APC and IL-2. We assessed the frequency of ESO-specific cells in the cultures by staining with DR52b/ESO(119-143) tetramers (ESO-tetramers) and TCR repertoire of ESO-tetramer(+) cells by co-staining with TCR variable β chain (BV) specific antibodies. We isolated ESO-tetramer(+) cells by flow cytometry cell sorting and expanded them with PHA, APC and IL-2 to generate ESO-specific T(H) lines. We characterized the lines for antigen recognition, by stimulation with ESO peptide or recombinant protein, cytokine production, by intracellular staining using specific antibodies, and alloreactivity, by stimulation with allo-APC. Using this approach, we could consistently generate ESO-tetramer(+) T(H) lines from conventional CD4(+)CD25(-) naïve and central memory populations, but not from effector memory populations or CD4(+)CD25(+) Treg. In vitro primed T(H) lines recognized ESO with affinities comparable to ESO-tetramer(+) cells from patients immunized with an ESO vaccine and used a similar TCR repertoire. In this study, using MHC class II/ESO tetramers, we have implemented an in vitro priming platform allowing the generation of ESO-monospecific polyclonal T(H) lines from non-immune individuals. This is an approach that is of potential interest for adoptive cell therapy of patients bearing ESO-expressing cancers.
Resumo:
BACKGROUND: Plasmodium vivax circumsporozoite (PvCS) protein is a major sporozoite surface antigen involved in parasite invasion of hepatocytes and is currently being considered as vaccine candidate. PvCS contains a dimorphic central repetitive fragment flanked by conserved regions that contain functional domains. METHODS: We have developed a chimeric 137-mer synthetic polypeptide (PvCS-NRC) that includes the conserved region I and region II-plus and the two natural repeat variants known as VK210 and VK247. The antigenicity of PvCS-NRC was tested using human sera from PNG and Colombia endemic areas and its immunogenicity was confirmed in mice with different genetic backgrounds, the polypeptide formulated either in Alum or GLA-SE adjuvants was assessed in inbred C3H, CB6F1 and outbred ICR mice, whereas a formulation in Montanide ISA51 was tested in C3H mice. RESULTS: Antigenicity studies indicated that the chimeric peptide is recognized by a high proportion (60-70%) of residents of malaria-endemic areas. Peptides formulated with either GLA-SE or Montanide ISA51 adjuvants induced stronger antibody responses as compared with the Alum formulation. Sera from immunized mice as well as antigen-specific affinity purified human IgG antibodies reacted with sporozoite preparations in immunofluorescence and Western blot assays, and displayed strong in vitro inhibition of sporozoite invasion (ISI) into hepatoma cells. CONCLUSIONS: The polypeptide was recognized at high prevalence when tested against naturally induced human antibodies and was able to induce significant immunogenicity in mice. Additionally, specific antibodies were able to recognize sporozoites and were able to block sporozoite invasion in vitro. Further evaluation of this chimeric protein construct in preclinical phase e.g. in Aotus monkeys in order to assess the humoral and cellular immune responses as well as protective efficacy against parasite challenge of the vaccine candidate must be conducted.
Resumo:
Cell adhesion to the extracellular matrix proteins occurs through interactions with integrins that bind to Arg-Gly-Asp (RGD) tripeptides, and syndecan-4, which recognizes the heparin-binding domain of other proteins. Both receptors trigger signaling pathways, including those that activate RhoGTPases such as RhoA and Rac1. This sequence of events modulates cell adhesion to the ECM and cell migration. Using a neuron-astrocyte model, we have reported that the neuronal protein Thy-1 engages αVβ3 integrin and syndecan-4 to induce RhoA activation and strong astrocyte adhesion to their underlying substrate. Thus, because cell-cell interactions and strong cell attachment to the matrix are considered antagonistic to cell migration, we hypothesized that Thy-1 stimulation of astrocytes should preclude cell migration. Here, we studied the effect of Thy-1 expressing neurons on astrocyte polarization and migration using a wound-healing assay and immunofluorescence analysis. Signaling molecules involved were studied by affinity precipitation, western blotting and the usage of specific antibodies. Intriguingly, Thy-1 interaction with its two receptors was found to increase astrocyte polarization and migration. The latter events required interactions of these receptors with both the RGD-like sequence and the heparin-binding domain of Thy-1. Additionally, prolonged Thy-1-receptor interactions inhibited RhoA activation while activating FAK, PI3K and Rac1. Therefore, sustained engagement of integrin and syndecan-4 with the neuronal surface protein Thy-1 induces astrocyte migration. Interestingly we identify here, a cell-cell interaction that despite initially inducing strong cell attachment, favors cell migration upon persistent stimulation by engaging the same signaling receptors and molecules as those utilized by the extracellular matrix proteins to stimulate cell movement.
Resumo:
Many vaccines have been very successful. They can protect from many different infectious diseases, and thus contribute enormously to public health. The majority of successful vaccines induce neutralizing antibodies, which are essential for protection from disease, by the inhibition of microbe invasion and spread through the body, via extracellular compartments, or by neutralization of toxins. In contrast to infectious diseases, the pathological process in cancer is primarily intracellular. Immunity to cancer depends mainly on T cells which are capable of identifying and eliminating abnormal cells, via recognition of peptide antigens presented by major histocompatibility complex molecules at the cell surface. In some instances, tumor-specific antibodies can contribute to immune defense against cancer. Unfortunately, for many solid tumors (including melanoma), this mechanism is insufficient. Nevertheless, the search for cancer-neutralizing antibodies continues, similar to, e.g., HIV neutralizing antibodies. In this chapter, we focus on the development of T cell vaccines, a great challenge but also a promising approach as a new therapy for melanoma, other cancers, and intracellular pathogens
Resumo:
A new strategy for the rapid identification of new malaria antigens based on protein structural motifs was previously described. We identified and evaluated the malaria vaccine potential of fragments of several malaria antigens containing α-helical coiled coil protein motifs. By taking advantage of the relatively short size of these structural fragments, we constructed different poly-epitopes in which 3 or 4 of these segments were joined together via a non-immunogenic linker. Only peptides that are targets of human antibodies with anti-parasite in vitro biological activities were incorporated. One of the constructs, P181, was well recognized by sera and peripheral blood mononuclear cells (PBMC) of adults living in malaria-endemic areas. Affinity purified antigen-specific human antibodies and sera from P181-immunized mice recognised native proteins on malaria-infected erythrocytes in both immunofluorescence and western blot assays. In addition, specific antibodies inhibited parasite development in an antibody dependent cellular inhibition (ADCI) assay. Naturally induced antigen-specific human antibodies were at high titers and associated with clinical protection from malaria in longitudinal follow-up studies in Senegal.
Resumo:
BACKGROUND: The storage of blood induces the formation of erythrocytes-derived microparticles. Their pathogenic role in blood transfusion is not known so far, especially the risk to trigger alloantibody production in the recipient. This work aims to study the expression of clinically significant blood group antigens on the surface of red blood cells microparticles. MATERIAL AND METHODS: Red blood cells contained in erythrocyte concentrates were stained with specific antibodies directed against blood group antigens and routinely used in immunohematology practice. After inducing erythrocytes vesiculation with calcium ionophore, the presence of blood group antigens was analysed by flow cytometry. RESULTS: The expression of several blood group antigens from the RH, KEL, JK, FY, MNS, LE and LU systems was detected on erythrocyte microparticles. The presence of M (MNS1), N (MNS2) and s (MNS4) antigens could not be demonstrated by flow cytometry, despite that glycophorin A and B were identified on microparticles using anti-CD235a and anti-MNS3. DISCUSSION: We conclude that blood group antigens are localized on erythrocytes-derived microparticles and probably keep their immunogenicity because of their capacity to bind specific antibody. Selective segregation process during vesiculation or their ability to elicit an immune response in vivo has to be tested by further studies.
Resumo:
Tanto el asma ocupacional como la neumonitis por hipersensibilidad, como es el pulmón del cuidador de aves, son patologías respiratorias que se pueden prevenir o disminuir su aparición mediante la evitación de la fuente antigénica. Para poder actuar de forma preventiva es de utilidad el disponer de ensayos rápidos que sean capaces de estimar la presencia de alérgeno de forma inmediata. En el marco de este proyecto de dos años de duración tenemos por objeto el desarrollar y estandarizar dos métodos rápidos, inmunocromatográficos, para la determinación de alérgenos de soja y de proteínas séricas de paloma. Alérgenos que han sido seleccionados por su importancia en el medio como agentes causales de asma y neumonitis por hipersensibilidad, respectivamente. También tenemos por objeto determinar la carga de alérgeno de soja en la fracción de partículas menores de 10 micrómetros (PM10) en los alrededores del puerto de Barcelona y comprarla con los niveles en los filtros de partículas suspendidas totales (TSP). Como pasos previos al desarrollo de los ensayos rápidos se han producido anticuerpos específicos frente al extracto de cáscara de soja de bajo peso molecular y frente al suero de paloma, se ha desarrollado un ELISA tipo sándwich para cada alérgeno y parte de los anticuerpos se ha conjugado con oro coloidal. El ensayo inmunocromatográfico para la soja presenta un límite de detección de 6.25ng/ml y ha sido validado mediante el análisis de 119 muestras ambientales, presentando una elevada especificidad y sensibilidad. El ensayo inmunocromatográfico para la determinación de antígenos séricos de paloma requiere ser validado. Mediante un métodos de ELISA de inhibición se han determinado los niveles de alérgeno de soja en filtros PM10 y TSP. A pesar de la buena correlación entre los niveles de alérgeno en ambos filtros, se observó una amplia variación en la proporción PM10/TSP entre días.
Identification of Leishmania major cysteine proteinases as targets of the immune response in humans.
Resumo:
In this study, we report the identification of two parasite polypeptides recognized by human sera of patients infected with Leishmania major. Isolation and sequencing of the two genes encoding these polypeptides revealed that one of the genes is similar to the L. major cathepsin L-like gene family CPB, whereas the other gene codes for the L. major homologue of the cysteine proteinase a (CPA) of L. mexicana. By restriction enzyme digestion of genomic DNA, we show that the CPB gene is present in multiple copies in contrast to the cysteine proteinase CPA gene which could be unique. Specific antibodies directed against the mature regions of both types expressed in Escherichia coli were used to analyze the expression of these polypeptides in different stages of the parasite's life cycle. Polypeptides of 27 and 40 kDa in size, corresponding to CPA and CPB respectively, were detected at higher level in amastigotes than in stationary phase promastigotes. Purified recombinant CPs were also used to examine the presence of specific antibodies in sera from either recovered or active cases of cutaneous leishmaniasis patients. Unlike sera from healthy uninfected controls, all the sera reacted with recombinant CPA and CPB. This finding indicates that individuals having recovered from cutaneous leishmaniasis or with clinically apparent disease have humoral responses to cysteine proteinases demonstrating the importance of these proteinases as targets of the immune response and also their potential use for serodiagnosis.