886 resultados para somatic asexual line
When the Line is Crossed... : Paths to Control and Sanction Behaviour Necessitating a State Reaction
Resumo:
The article presents a special form of a European comparative synopsis. For this case examples have been chosen ranging from administrative or minor (criminal) offences to increasingly serious offences and offenders. In this way it can be comparatively demonstrated how the criminal justice systems studied handle specific cases and whether they do so in a similar or different way.
Resumo:
The FIT trial was conducted to evaluate the safety and efficacy of 90Y-ibritumomab tiuxetan (0.4 mCi/kg; maximum dose 32 mCi) when used as consolidation of first complete or partial remission in patients with previously untreated, advanced-stage follicular lymphoma (FL). Patients were randomly assigned to either 90Y-ibritumomab treatment (n = 207) or observation (n = 202) within 3 months (mo) of completing initial induction therapy (chemotherapy only: 86%; rituximab in combination with chemotherapy: 14%). Response status prior to randomization did not differ between the groups: 52% complete response (CR)/CR unconfirmed (CRu) to induction therapy and 48% partial response (PR) in the 90Y-ibritumomab arm vs 53% CR/CRu and 44% PR in the control arm. The primary endpoint was progression-free survival (PFS) of the intent-to-treat (ITT) population. Results from the first extended follow-up after a median of 3.5 years revealed a significant improvement in PFS from the time of randomization with 90Y-ibritumomab consolidation compared with control (36.5 vs 13.3 mo, respectively; P < 0.0001; Morschhauser et al. JCO. 2008; 26:5156-5164). Here we report a median follow-up of 66.2 mo (5.5 years). Five-year PFS was 47% in the 90Y-ibritumomab group and 29% in the control group (hazard ratio (HR) = 0.51, 95% CI 0.39-0.65; P < 0.0001). Median PFS in the 90Y-ibritumomab group was 49 mo vs 14 mo in the control group. In patients achieving a CR/CRu after induction, 5-year PFS was 57% in the 90Y-ibritumomab group, and the median had not yet been reached at 92 months, compared with a 43% 5-year PFS in the control group and a median of 31 mo (HR = 0.61, 95% CI 0.42-0.89). For patients in PR after induction, the 5-year PFS was 38% in the 90Y-ibritumomab group with a median PFS of 30 mo vs 14% in the control group with a median PFS of 6 mo (HR = 0.38, 95% CI 0.27-0.53). Patients who had received rituximab as part of induction treatment had a 5-year PFS of 64% in the 90Y-ibritumomab group and 48% in the control group (HR = 0.66, 95% CI 0.30-1.47). For all patients, time to next treatment (as calculated from the date of randomization) differed significantly between both groups; median not reached at 99 mo in the 90Y-ibritumomab group vs 35 mo in the control group (P < 0.0001). The majority of patients received rituximab-containing regimens when treated after progression (63/82 [77%] in the 90Y-ibritumomab group and 102/122 [84%] in the control group). Overall response rate to second-line treatment was 79% in the 90Y-ibritumomab group (57% CR/CRu and 22% PR) vs 78% in the control arm (59% CR/CRu, 19% PR). Five-year overall survival was not significantly different between the groups; 93% and 89% in the 90Y-ibritumomab and control groups, respectively (P = 0.561). To date, 40 patients have died; 18 in the 90Y-ibritumomab group and 22 in the control group. Secondary malignancies were diagnosed in 16 patients in the 90Y-ibritumomab arm vs 9 patients in the control arm (P = 0.19). There were 6 (3%) cases of myelodysplastic syndrome (MDS)/acute myelogenous leukemia (AML) in the 90Y-ibritumomab arm vs 1 MDS in the control arm (P = 0.063). In conclusion, this extended follow-up of the FIT trial confirms the benefit of 90Y-ibritumomab consolidation with a nearly 3 year advantage in median PFS. A significant 5-year PFS improvement was confirmed for patients with a CR/CRu or a PR after induction. Effective rescue treatment with rituximab-containing regimens may explain the observed no difference in overall survival between both patient groups who were - for the greater part - rituximab-naïve.
Resumo:
PURPOSE: To evaluate the efficacy of first-line chemotherapy (CT) in preventing external-beam radiotherapy (EBR) and/or enucleation in patients with retinoblastoma (Rbl). PATIENTS AND METHODS: Twenty-four patients with newly diagnosed unilateral or bilateral Rbl received CT associated with local treatment (LT). Two to five courses of etoposide and carboplatin were administered at 3- to 4-week intervals, depending on tumor response, and were completed each time by LT. RESULTS: Tumor response was observed in all eyes. Twenty-one of 24 patients showed a complete response (CR) that persisted at a median follow-up (FU) of 31 months (range, 4 to 41 months). Among the three patients who relapsed, two were lost to FU and one died of progressive disease. CR was achieved by CT and LT alone in 15 (71.4%) of 21 patients with less advanced disease (groups I to III). Six other patients with advanced disease (groups IV and V) experienced treatment failure and needed salvage treatment by EBR and/or enucleation. The difference between the two patient groups with regard to disease stage was statistically significant (P <.0001). EBR could be avoided in 13 (68.4%) of 19 patients, who presented with groups I to III (15 eyes) and group V (one eye) disease, whereas enucleation could be avoided in only two (40%) of five. CONCLUSION: CT combined with intensive LT is effective in patients with groups I to III Rbl, permitting the avoidance of EBR in the majority of these young children and, thus, reducing the risk of long-term sequelae. This is in contrast with the disappointing results for patients with groups IV and V Rbl, in whom EBR and/or enucleation was needed.
Resumo:
OBJECTIVES: It is still debated if pre-existing minority drug-resistant HIV-1 variants (MVs) affect the virological outcomes of first-line NNRTI-containing ART. METHODS: This Europe-wide case-control study included ART-naive subjects infected with drug-susceptible HIV-1 as revealed by population sequencing, who achieved virological suppression on first-line ART including one NNRTI. Cases experienced virological failure and controls were subjects from the same cohort whose viraemia remained suppressed at a matched time since initiation of ART. Blinded, centralized 454 pyrosequencing with parallel bioinformatic analysis in two laboratories was used to identify MVs in the 1%-25% frequency range. ORs of virological failure according to MV detection were estimated by logistic regression. RESULTS: Two hundred and sixty samples (76 cases and 184 controls), mostly subtype B (73.5%), were used for the analysis. Identical MVs were detected in the two laboratories. 31.6% of cases and 16.8% of controls harboured pre-existing MVs. Detection of at least one MV versus no MVs was associated with an increased risk of virological failure (OR = 2.75, 95% CI = 1.35-5.60, P = 0.005); similar associations were observed for at least one MV versus no NRTI MVs (OR = 2.27, 95% CI = 0.76-6.77, P = 0.140) and at least one MV versus no NNRTI MVs (OR = 2.41, 95% CI = 1.12-5.18, P = 0.024). A dose-effect relationship between virological failure and mutational load was found. CONCLUSIONS: Pre-existing MVs more than double the risk of virological failure to first-line NNRTI-based ART.
Resumo:
Permo-Mesozoic Canavese sediments are pinched in between the pre-Alpine high-grade metamorphic Ivrea Zone and the Alpine metamorphosed Sesia Zone along the Insubric Line W of Locarno. According to the ``illite crystallinity'' these sediments were deformed under anchi- and epizonal conditions. Synkinematically formed white mica in the mylonitized Canavese sediments yields the following K-Ar age ranges: 60-76 Ma at the southwestern end, 28-43 Ma in the central part and 19-26 Ma in the northeastern part of the Insubric Line W of Locarno. The youngest age group dates the main uplift and dextral strike-slip movements of the Insubric Line, comprising mylonites in the NE and cataclasites in the SW. This activity correlates with Late Oligocene to Early Miocene rapid cooling and uplift of the Central Alps.
Resumo:
BACKGROUND: Regulation of genes transferred to eukaryotic organisms is often limited by the lack of consistent expression levels in all transduced cells, which may result in part from epigenetic gene silencing effects. This reduces the efficacy of ligand-controlled gene switches designed for somatic gene transfers such as gene therapy. METHODS: A doxycycline-controlled transgene was stably introduced in human cells, and clones were screened for epigenetic silencing of the transgene. Various regulatory proteins were targeted to the silent transgene, to identify those that would mediate regulation by doxycycline. RESULTS: A doxycycline-controlled minimal promoter was found to be prone to gene silencing, which prevents activation by a fusion of the bacterial TetR DNA-binding domain with the VP16 activator. DNA modification studies indicated that the silenced transgene adopts a poorly accessible chromatin structure. Several cellular transcriptional activators were found to restore an accessible DNA structure when targeted to the silent transgene, and they cooperated with Tet-VP16 to mediate regulation by doxycycline. CONCLUSIONS: Reversal of the silencing of a tetracycline-regulated minimal promoter requires a chromatin-remodeling activity for subsequent promoter activation by the Tet-VP16 fusion protein. Thus, distinct regulatory elements may be combined to obtain long-term regulation and persistent expression of exogenous genes in eukaryotic cells.
Resumo:
Matrix effects, which represent an important issue in liquid chromatography coupled to mass spectrometry or tandem mass spectrometry detection, should be closely assessed during method development. In the case of quantitative analysis, the use of stable isotope-labelled internal standard with physico-chemical properties and ionization behaviour similar to the analyte is recommended. In this paper, an example of the choice of a co-eluting deuterated internal standard to compensate for short-term and long-term matrix effect in the case of chiral (R,S)-methadone plasma quantification is reported. The method was fully validated over a concentration range of 5-800 ng/mL for each methadone enantiomer with satisfactory relative bias (-1.0 to 1.0%), repeatability (0.9-4.9%) and intermediate precision (1.4-12.0%). From the results obtained during validation, a control chart process during 52 series of routine analysis was established using both intermediate precision standard deviation and FDA acceptance criteria. The results of routine quality control samples were generally included in the +/-15% variability around the target value and mainly in the two standard deviation interval illustrating the long-term stability of the method. The intermediate precision variability estimated in method validation was found to be coherent with the routine use of the method. During this period, 257 trough concentration and 54 peak concentration plasma samples of patients undergoing (R,S)-methadone treatment were successfully analysed for routine therapeutic drug monitoring.
Resumo:
The distribution of Kudoa sciaenae cysts (Myxozoa), in terms of intensity and prevalence, in the somatic muscles of the sciaenid Stellifer minor, shows an apparent preference for the anterior body region, including the head. The observed preference seems to be a consequence of the differential distribution of muscle mass, in the defined area, because when density (cyst/g dry muscle), is considered, all the somatic areas, but not cephalic area, do no show significant differences in terms of mean intensity and prevalence.
Resumo:
SUMMARY Genomic imprinting is an epigenetic mechanism of transcriptional regulation that ensures restriction of expression of a subset of mammalian genes to a single parental allele. The best studied example of imprinted gene regulation is the Igf2/H19 locus, which is also the most commonly altered by loss of imprinting (LOT) in cancer. LOT is associated with numerous hereditary diseases and several childhood, and adult cancers. Differential expression of reciprocal H19 and 1gf2 alleles in somatic cells depends on the methylation status of the imprinting control region (ICR) which regulates binding of CTCF, an ubiquitously expressed 11-zinc finger protein that binds specifically to non-methylated maternal ICR and thereby attenuates expression of Igf2, while it does not bind to methylated paternal ICR, which enables Igf2 expression. Initial ICR methylation occurs during gametogenesis by an as yet unknown mechanism. The accepted hypothesis is that the event of differential maternal and paternal DNA methylation depends on germ-line specific proteins. Our Laboratory identified a novel 11-zinc-finger protein CTCF-T (also known as CTCFL and BORIS) that is uniquely expressed in the male germ-line and is highly homologous within its zinc-finger region with CTCF. The amino-acid sequences flanking the zinc-finger regions of CTCF and CTCF-T have widely diverged, suggesting that though they could bind to the same DNA targets (ICRs) they are likely to have different functions. Interestingly, expression of CTCF-T and CTCF is mutually exclusive; CTCF-T-positive (CTCF-negative) cells occur in the stage of spermatogenesis that coincides with epigenetic reprogramming, including de novo DNA methylation. In our study we demonstrate the role that CTCF-T plays in genomic imprinting. Here we show that CTCF-T binds in vivo to the ICRs of Igf2/H19 and Dlk/Gt12 imprinted genes. In addition, we identified two novel proteins interacting with CTCF-T: a protein arginine methyltransferase PRMT7 and an arginine-rich histone H2A variant that we named trH2A. These interactions were confirmed and show that the two proteins interact with the amino-teiminal region of CTCF-T. Additionally, we show interaction of the amino- terminal region of CTCF-T with histones H1, H2A and H3. These results suggest that CTCF-T is a sequence-specific DNA (ICR) binding protein that associates with histones and recruits PRMT7. Interestingly, PRMT7 has a histone-methyltransferase activity. It has been shown that histone methylation can mark chromatin regions thereby directing DNA-methylation; thus, our hypothesis is that the CTCF-T protein-scaffold directs PRMT7 to methylate histone(s) assembled on ICRs, which marks chromatin for the recruitment of the de novo DNA methyltransferases to methylate DNA. To test this hypothesis, we developed an in vivo DNA-methylation assay using Xenopus laevis' oocytes, where H19 ICR and different expression cDNAs, including CTCF-T, PRMT7 and the de novo DNA methyltransferases (Dnmt3a, Dnmt3b and Dnmt3L) are microinjected into the nucleus. The methylation status of CpGs within the H19 ICR was analysed 48 or 72 hours after injection. Here we demonstrate that CpGs in the ICR are methylated in the presence of both CTCF-T and PRMT7, while control oocytes injected only with ICR did not show any methylation. Additionally, we showed for the first time that Dnmt3L is crucial for the establishment of the imprinting marks on H19 ICR. Moreover, we confirmed that Dnmt3a and Dnmt3b activities are complementary. Our data indicate that all three Dnmt3s are important for efficient de novo DNA methylation. In conclusion, we propose a mechanism for the establishment of de novo imprinting marks during spermatogenesis: the CTCF-T/PRMT7 protein complex directs histone methylation leading to sequence-specific de novo DNA methylation of H19 ICR. RESUME L'empreinte génomique parentale est un mécanisme épigénétique de régulation transcriptionelle qui se traduit par une expression différentielle des deux allèles de certains gènes, en fonction de leur origine parentale. L'exemple le mieux caractérisé de gènes soumis à l'empreinte génomique parentale est le locus Igf2/H19, qui est aussi le plus fréquemment altéré par relaxation d'empreinte (en anglais: loss of imprinting, LOI) dans les cancers. Cette relaxation d'empreinte est aussi associée à de nombreuses maladies héréditaires, ainsi qu'à de nombreux cancers chez l'enfant et l'adulte. Dans les cellules somatiques, les différences d'expression des allèles réciproques H19 et Ig12 est sous le contrôle d'une région ICR (Imprinting Control Region). La méthylation de cette région ICR régule l'ancrage de la protéine à douze doigts de zinc CTCF, qui se lie spécifiquement à l'ICR maternel non-méthylé, atténuant ainsi l'expression de Igf2, alors qu'elle ne s'ancre pas à l'ICR paternel méthyle. Le mécanisme qui accompagne la méthylation initiale de la région ICR durant la gamétogenèse n'a toujours pas été élucidé. L'hypothèse actuelle propose que la différence de méthylation entre l'ADN maternel et paternel résulte de l'expression de protéines propres aux zones germinales. Notre laboratoire a récemment identifié une nouvelle protéine à douze doigts de zinc, CTCF-T (aussi dénommée CTCFL et BORRIS), qui est exprimée uniquement dans les cellules germinales mâles, dont la partie à douze doigts de zinc est fortement homologue à la protéine CTCF. La séquence d'acides aminés de part et d'autre de cette région est quant à elle très divergente, ce qui implique que CTCF-T se lie sans doute au même ADN cible que CTCF, mais possède des fonctions différentes. De plus, l'expression de CTCF-T et de CTCF s'oppose mutuellement; l'expression de la protéine CTCF-T (cellules CTCF-T positives, CTCF negatives) qui a lieu pendant la spermatogenèse coïncide avec la reprogrammation épigénétique, notamment la méthylation de novo de l'ADN. La présente étude démontre le rôle essentiel joué par la protéine CTCF-T dans l'acquisition de l'empreinte génomique parentale. Nous montrons ici que CTCF-T s'associe in vivo avec les régions ICR des loci Igf2/H19 et Dlk/Gt12. Nous avons également identifié deux nouvelles protéines qui interagissent avec CTCF-T : une protéine arginine méthyl transférase PRMT7, et un variant de l'histone H2A, riche en arginine, que nous avons dénommé trH2A. Ces interactions ont été analysées plus en détail, et confinnent que ces deux protéines s'associent avec la région N-terminale de CTCF-T. Aussi, nous présentons une interaction de la région N-terminale de CTCF-T avec les histones H1, H2, et H3. Ces résultats suggèrent que CTCF-T est une protéine qui se lie spécifiquement aux régions ICR, qui s'associe avec différents histones et qui recrute PRMT7. PRMT7 possède une activité méthyl-tansférase envers les histones. Il a été montré que la méthylation des histones marque certains endroits de la chromatine, dirigeant ainsi la méthylation de l'ADN. Notre hypothèse est donc la suivante : la protéine CTCF-T sert de base qui dirige la méthylation des histones par PRMT7 dans les régions ICR, ce qui contribue à marquer la chromatine pour le recrutement de nouvelles méthyl transférases pour méthyler l'ADN. Afin de valider cette hypothèse, nous avons développé un système de méthylation de l'ADN in vivo, dans des oeufs de Xenopus laevis, dans le noyau desquels nous avons mico-injecté la région ICR du locus H19, ainsi que différents vecteurs d'expression pour CTCF-T, PRMT7, et les de novo méthyl transférases (Dnmt3a, Dnmt3b et Dnmt3L). Les CpGs méthyles de la région ICR du locus H19 ont été analysé 48 et 72 heures après l'injection. Cette technique nous a permis de démontrer que les CpGs de la région ICR sont méthyles en présence de CTCF-T et de PRMT7, tandis que les contrôles injectés seulement avec la région ICR ne présentent aucun signe de méthylation. De plus, nous démontrons pour la première fois que la protéine méthyl transférase Dnmt3L est déterminant pour l'établissement de l'empreinte génomique parentale au niveau de la région ICR du locus H19. Aussi, nous confirmons que les activités méthyl transférases de Dnmt3a et Dnmt3b sont complémentaires. Nos données indiquent que les trois protéines Dnmt3 sont impliquées dans la méthylation de l'ADN. En conclusion, nous proposons un mécanisme responsable de la mise en place de nouvelles empreintes génomiques pendant la spermatogenèse : le complexe protéique CTCF-T/PRMT7 dirige la méthylation des histones aboutissant à la méthylation de novo de l'ADN au locus H19.
Resumo:
Most opinion favors the origin of the malaria parasites from a coccidial ancestor. It is assumed that whatever the process through which the coccidia differentiated into a Plasmodium this phenomenon very probably occured millions of year ago, and during that differentiation process the original coccidia vanished. Therefore it has never repeated. At the light of some experiments the existence, at the present time, of a coccidial cycle of development in the malaria parasites, is proposed. The conection routes and mechanisms through which the malaria parasite changes to a coccidial life, and the routes in reverse are exposed. Transmission of the malaria-coccidial forms is suggested.
Resumo:
We characterized the Plasmodium falciparum antigen 332 (Ag332) which is specifically expressed during the asexual intraerythrocytic cycle of the parasite. The corresponding Pf332 gene has been located in the subtelomeric region of chromosome 11. Furthermore, it is present in all strais so far analyzed and shows marked restriction length fragment polymorphism. Partial sequence and restriction endonuclease digestion of cloned fragments revealed that the Pf332 gene is composed of highly degenerated repeats rich is glutamic acid. Mung been nuclease digestion and Northern blot analysis suggested that Pf332 gene codes for a protein of about 700 kDa. These data were further confirmed by Western blot and immunoprecipitation of parasites extracts with an antiserum raised against a recombinant clone expressing part of the Ag332. Confocal immunofluorescence showed that Ag332 is translocated from the parasite to the surface of infected red blood cells within vesicle-like structures. In addition, Ag332 was detected on the surface of monkey erythrocytes infected with Plasmodium falciparum.
Resumo:
In the Saimiri monkey, an experimental host for human malaria, acquired protection against Plasmodium falciparum blood stages depends on the IgG antibody populations developed. In vivo protective anti-falciparum activity of IgG antibodies is correlated with the in vivo opsonizing activity promoting phagocytosis of parasited red bloood cells. In contrast, non protective antibodies inhibit this mechanism by competing at the target level. A similar phenomenon can be and human infection. Anti-cytoadherent and anti-rosette antibodies developed by Saimiri and humans prevent the development of physiopathological events like cerebral malaria which can also occur in this experimental host. Furthermore, transfer to protective human anti-falciparum IgG antibodies into infected Saimiri monkeys exerts an anti parasite activity as efficient as that observed when it is transfered into acute falciparum malaria patients, making the Saimiri an even more attractive host. Studies on the role of immunocompetent cells in the protective immune reponse are still in their infancy, however the existance of a restricted polymorphism of MHC II class molecules in the Saimiri confers additional theoretical and practical importance to this model.
Resumo:
Mechanisms of immune protection against the asexual blood stage infection by Plasmodium falciparum are reviewed. Recent studies of two independent lines of research developed at the Institute Pasteur, in humans and primate infections clearly indicate an obligatory interaction of antibodies and effector cells to express the anti-parasitic effect.
Resumo:
Cryptic exons or pseudoexons are typically activated by point mutations that create GT or AG dinucleotides of new 5' or 3' splice sites in introns, often in repetitive elements. Here we describe two cases of tetrahydrobiopterin deficiency caused by mutations improving the branch point sequence and polypyrimidine tracts of repeat-containing pseudoexons in the PTS gene. In the first case, we demonstrate a novel pathway of antisense Alu exonization, resulting from an intronic deletion that removed the poly(T)-tail of antisense AluSq. The deletion brought a favorable branch point sequence within proximity of the pseudoexon 3' splice site and removed an upstream AG dinucleotide required for the 3' splice site repression on normal alleles. New Alu exons can thus arise in the absence of poly(T)-tails that facilitated inclusion of most transposed elements in mRNAs by serving as polypyrimidine tracts, highlighting extraordinary flexibility of Alu repeats in shaping intron-exon structure. In the other case, a PTS pseudoexon was activated by an A>T substitution 9 nt upstream of its 3' splice site in a LINE-2 sequence, providing the first example of a disease-causing exonization of the most ancient interspersed repeat. These observations expand the spectrum of mutational mechanisms that introduce repetitive sequences in mature transcripts and illustrate the importance of intronic mutations in alternative splicing and phenotypic variability of hereditary disorders.