975 resultados para solution set mapping
Resumo:
Machine learning techniques are used for extracting valuable knowledge from data. Nowa¬days, these techniques are becoming even more important due to the evolution in data ac¬quisition and storage, which is leading to data with different characteristics that must be exploited. Therefore, advances in data collection must be accompanied with advances in machine learning techniques to solve new challenges that might arise, on both academic and real applications. There are several machine learning techniques depending on both data characteristics and purpose. Unsupervised classification or clustering is one of the most known techniques when data lack of supervision (unlabeled data) and the aim is to discover data groups (clusters) according to their similarity. On the other hand, supervised classification needs data with supervision (labeled data) and its aim is to make predictions about labels of new data. The presence of data labels is a very important characteristic that guides not only the learning task but also other related tasks such as validation. When only some of the available data are labeled whereas the others remain unlabeled (partially labeled data), neither clustering nor supervised classification can be used. This scenario, which is becoming common nowadays because of labeling process ignorance or cost, is tackled with semi-supervised learning techniques. This thesis focuses on the branch of semi-supervised learning closest to clustering, i.e., to discover clusters using available labels as support to guide and improve the clustering process. Another important data characteristic, different from the presence of data labels, is the relevance or not of data features. Data are characterized by features, but it is possible that not all of them are relevant, or equally relevant, for the learning process. A recent clustering tendency, related to data relevance and called subspace clustering, claims that different clusters might be described by different feature subsets. This differs from traditional solutions to data relevance problem, where a single feature subset (usually the complete set of original features) is found and used to perform the clustering process. The proximity of this work to clustering leads to the first goal of this thesis. As commented above, clustering validation is a difficult task due to the absence of data labels. Although there are many indices that can be used to assess the quality of clustering solutions, these validations depend on clustering algorithms and data characteristics. Hence, in the first goal three known clustering algorithms are used to cluster data with outliers and noise, to critically study how some of the most known validation indices behave. The main goal of this work is however to combine semi-supervised clustering with subspace clustering to obtain clustering solutions that can be correctly validated by using either known indices or expert opinions. Two different algorithms are proposed from different points of view to discover clusters characterized by different subspaces. For the first algorithm, available data labels are used for searching for subspaces firstly, before searching for clusters. This algorithm assigns each instance to only one cluster (hard clustering) and is based on mapping known labels to subspaces using supervised classification techniques. Subspaces are then used to find clusters using traditional clustering techniques. The second algorithm uses available data labels to search for subspaces and clusters at the same time in an iterative process. This algorithm assigns each instance to each cluster based on a membership probability (soft clustering) and is based on integrating known labels and the search for subspaces into a model-based clustering approach. The different proposals are tested using different real and synthetic databases, and comparisons to other methods are also included when appropriate. Finally, as an example of real and current application, different machine learning tech¬niques, including one of the proposals of this work (the most sophisticated one) are applied to a task of one of the most challenging biological problems nowadays, the human brain model¬ing. Specifically, expert neuroscientists do not agree with a neuron classification for the brain cortex, which makes impossible not only any modeling attempt but also the day-to-day work without a common way to name neurons. Therefore, machine learning techniques may help to get an accepted solution to this problem, which can be an important milestone for future research in neuroscience. Resumen Las técnicas de aprendizaje automático se usan para extraer información valiosa de datos. Hoy en día, la importancia de estas técnicas está siendo incluso mayor, debido a que la evolución en la adquisición y almacenamiento de datos está llevando a datos con diferentes características que deben ser explotadas. Por lo tanto, los avances en la recolección de datos deben ir ligados a avances en las técnicas de aprendizaje automático para resolver nuevos retos que pueden aparecer, tanto en aplicaciones académicas como reales. Existen varias técnicas de aprendizaje automático dependiendo de las características de los datos y del propósito. La clasificación no supervisada o clustering es una de las técnicas más conocidas cuando los datos carecen de supervisión (datos sin etiqueta), siendo el objetivo descubrir nuevos grupos (agrupaciones) dependiendo de la similitud de los datos. Por otra parte, la clasificación supervisada necesita datos con supervisión (datos etiquetados) y su objetivo es realizar predicciones sobre las etiquetas de nuevos datos. La presencia de las etiquetas es una característica muy importante que guía no solo el aprendizaje sino también otras tareas relacionadas como la validación. Cuando solo algunos de los datos disponibles están etiquetados, mientras que el resto permanece sin etiqueta (datos parcialmente etiquetados), ni el clustering ni la clasificación supervisada se pueden utilizar. Este escenario, que está llegando a ser común hoy en día debido a la ignorancia o el coste del proceso de etiquetado, es abordado utilizando técnicas de aprendizaje semi-supervisadas. Esta tesis trata la rama del aprendizaje semi-supervisado más cercana al clustering, es decir, descubrir agrupaciones utilizando las etiquetas disponibles como apoyo para guiar y mejorar el proceso de clustering. Otra característica importante de los datos, distinta de la presencia de etiquetas, es la relevancia o no de los atributos de los datos. Los datos se caracterizan por atributos, pero es posible que no todos ellos sean relevantes, o igualmente relevantes, para el proceso de aprendizaje. Una tendencia reciente en clustering, relacionada con la relevancia de los datos y llamada clustering en subespacios, afirma que agrupaciones diferentes pueden estar descritas por subconjuntos de atributos diferentes. Esto difiere de las soluciones tradicionales para el problema de la relevancia de los datos, en las que se busca un único subconjunto de atributos (normalmente el conjunto original de atributos) y se utiliza para realizar el proceso de clustering. La cercanía de este trabajo con el clustering lleva al primer objetivo de la tesis. Como se ha comentado previamente, la validación en clustering es una tarea difícil debido a la ausencia de etiquetas. Aunque existen muchos índices que pueden usarse para evaluar la calidad de las soluciones de clustering, estas validaciones dependen de los algoritmos de clustering utilizados y de las características de los datos. Por lo tanto, en el primer objetivo tres conocidos algoritmos se usan para agrupar datos con valores atípicos y ruido para estudiar de forma crítica cómo se comportan algunos de los índices de validación más conocidos. El objetivo principal de este trabajo sin embargo es combinar clustering semi-supervisado con clustering en subespacios para obtener soluciones de clustering que puedan ser validadas de forma correcta utilizando índices conocidos u opiniones expertas. Se proponen dos algoritmos desde dos puntos de vista diferentes para descubrir agrupaciones caracterizadas por diferentes subespacios. Para el primer algoritmo, las etiquetas disponibles se usan para bus¬car en primer lugar los subespacios antes de buscar las agrupaciones. Este algoritmo asigna cada instancia a un único cluster (hard clustering) y se basa en mapear las etiquetas cono-cidas a subespacios utilizando técnicas de clasificación supervisada. El segundo algoritmo utiliza las etiquetas disponibles para buscar de forma simultánea los subespacios y las agru¬paciones en un proceso iterativo. Este algoritmo asigna cada instancia a cada cluster con una probabilidad de pertenencia (soft clustering) y se basa en integrar las etiquetas conocidas y la búsqueda en subespacios dentro de clustering basado en modelos. Las propuestas son probadas utilizando diferentes bases de datos reales y sintéticas, incluyendo comparaciones con otros métodos cuando resulten apropiadas. Finalmente, a modo de ejemplo de una aplicación real y actual, se aplican diferentes técnicas de aprendizaje automático, incluyendo una de las propuestas de este trabajo (la más sofisticada) a una tarea de uno de los problemas biológicos más desafiantes hoy en día, el modelado del cerebro humano. Específicamente, expertos neurocientíficos no se ponen de acuerdo en una clasificación de neuronas para la corteza cerebral, lo que imposibilita no sólo cualquier intento de modelado sino también el trabajo del día a día al no tener una forma estándar de llamar a las neuronas. Por lo tanto, las técnicas de aprendizaje automático pueden ayudar a conseguir una solución aceptada para este problema, lo cual puede ser un importante hito para investigaciones futuras en neurociencia.
Resumo:
There is general agreement within the scientific community in considering Biology as the science with more potential to develop in the XXI century. This is due to several reasons, but probably the most important one is the state of development of the rest of experimental and technological sciences. In this context, there are a very rich variety of mathematical tools, physical techniques and computer resources that permit to do biological experiments that were unbelievable only a few years ago. Biology is nowadays taking advantage of all these newly developed technologies, which are been applied to life sciences opening new research fields and helping to give new insights in many biological problems. Consequently, biologists have improved a lot their knowledge in many key areas as human function and human diseases. However there is one human organ that is still barely understood compared with the rest: The human brain. The understanding of the human brain is one of the main challenges of the XXI century. In this regard, it is considered a strategic research field for the European Union and the USA. Thus, there is a big interest in applying new experimental techniques for the study of brain function. Magnetoencephalography (MEG) is one of these novel techniques that are currently applied for mapping the brain activity1. This technique has important advantages compared to the metabolic-based brain imagining techniques like Functional Magneto Resonance Imaging2 (fMRI). The main advantage is that MEG has a higher time resolution than fMRI. Another benefit of MEG is that it is a patient friendly clinical technique. The measure is performed with a wireless set up and the patient is not exposed to any radiation. Although MEG is widely applied in clinical studies, there are still open issues regarding data analysis. The present work deals with the solution of the inverse problem in MEG, which is the most controversial and uncertain part of the analysis process3. This question is addressed using several variations of a new solving algorithm based in a heuristic method. The performance of those methods is analyzed by applying them to several test cases with known solutions and comparing those solutions with the ones provided by our methods.
Resumo:
Este artículo ofrece una reflexión sobre el papel de los mapas conceptuales en el actual escenario de la educación In the present paper, we carry out the application of concept mapping strategies to learning Physical Chemistry, in particular, of all aspect of Corrosion. This strategy is an alternative method to supplement examinations: it can show the teacher how much the students knew and how much they didn´t know; and the students can evaluate their own learning. Before giving tile matter on Corrosion, the teachers evaluated the previous knowledge of the students in the field and explained to the students how create the conceptual maps with Cmap tools. When the subject is finished, teachers are assessed the conceptual maps developed by students and therefore also the level of the students learning. Teachers verified that the concept mapping is quite suitable for complicated theorics as Corrosion and it is an appropriate tool for the consolidation of educational experiences and for improvement affective lifelong learning. By using this method we demonstrated that the set of concepts accumulated in the cognitive structure of every student in unique and every student has therefore arranged the concepts from top to bottom in the mapping field in different ways with different linking" phrases, although these are involved in the same learning task.
Resumo:
We present a quasi-monotone semi-Lagrangian particle level set (QMSL-PLS) method for moving interfaces. The QMSL method is a blend of first order monotone and second order semi-Lagrangian methods. The QMSL-PLS method is easy to implement, efficient, and well adapted for unstructured, either simplicial or hexahedral, meshes. We prove that it is unconditionally stable in the maximum discrete norm, � · �h,∞, and the error analysis shows that when the level set solution u(t) is in the Sobolev space Wr+1,∞(D), r ≥ 0, the convergence in the maximum norm is of the form (KT/Δt)min(1,Δt � v �h,∞ /h)((1 − α)hp + hq), p = min(2, r + 1), and q = min(3, r + 1),where v is a velocity. This means that at high CFL numbers, that is, when Δt > h, the error is O( (1−α)hp+hq) Δt ), whereas at CFL numbers less than 1, the error is O((1 − α)hp−1 + hq−1)). We have tested our method with satisfactory results in benchmark problems such as the Zalesak’s slotted disk, the single vortex flow, and the rising bubble.
Resumo:
Environmental monitoring has become a key aspect in food production over the last few years. Due to their low cost, low power consumption and flexibility, Wireless Sensor Networks (WSNs) have turned up as a very convenient tool to be used in these environments where no intrusion is a must. In this work, a WSN application in a food factory is presented. The paper gives an overview of the system set up, covering from the initial study of the parameters and sensors, to the hardware-software design and development needed for the final tests in the factory facilities.
Resumo:
In the last decade we have seen how small and light weight aerial platforms - aka, Mini Unmanned Aerial Vehicles (MUAV) - shipped with heterogeneous sensors have become a 'most wanted' Remote Sensing (RS) tool. Most of the off-the-shelf aerial systems found in the market provide way-point navigation. However, they do not rely on a tool that compute the aerial trajectories considering all the aspects that allow optimizing the aerial missions. One of the most demanded RS applications of MUAV is image surveying. The images acquired are typically used to build a high-resolution image, i.e., a mosaic of the workspace surface. Although, it may be applied to any other application where a sensor-based map must be computed. This thesis provides a study of this application and a set of solutions and methods to address this kind of aerial mission by using a fleet of MUAVs. In particular, a set of algorithms are proposed for map-based sampling, and aerial coverage path planning (ACPP). Regarding to map-based sampling, the approaches proposed consider workspaces with different shapes and surface characteristics. The workspace is sampled considering the sensor characteristics and a set of mission requirements. The algorithm applies different computational geometry approaches, providing a unique way to deal with workspaces with different shape and surface characteristics in order to be surveyed by one or more MUAVs. This feature introduces a previous optimization step before path planning. After that, the ACPP problem is theorized and a set of ACPP algorithms to compute the MUAVs trajectories are proposed. The problem addressed herein is the problem to coverage a wide area by using MUAVs with limited autonomy. Therefore, the mission must be accomplished in the shortest amount of time. The aerial survey is usually subject to a set of workspace restrictions, such as the take-off and landing positions as well as a safety distance between elements of the fleet. Moreover, it has to avoid forbidden zones to y. Three different algorithms have been studied to address this problem. The approaches studied are based on graph searching, heuristic and meta-heuristic approaches, e.g., mimic, evolutionary. Finally, an extended survey of field experiments applying the previous methods, as well as the materials and methods adopted in outdoor missions is presented. The reported outcomes demonstrate that the findings attained from this thesis improve ACPP mission for mapping purpose in an efficient and safe manner.
Resumo:
In the last decade we have seen how small and light weight aerial platforms - aka, Mini Unmanned Aerial Vehicles (MUAV) - shipped with heterogeneous sensors have become a 'most wanted' Remote Sensing (RS) tool. Most of the off-the-shelf aerial systems found in the market provide way-point navigation. However, they do not rely on a tool that compute the aerial trajectories considering all the aspects that allow optimizing the aerial missions. One of the most demanded RS applications of MUAV is image surveying. The images acquired are typically used to build a high-resolution image, i.e., a mosaic of the workspace surface. Although, it may be applied to any other application where a sensor-based map must be computed. This thesis provides a study of this application and a set of solutions and methods to address this kind of aerial mission by using a fleet of MUAVs. In particular, a set of algorithms are proposed for map-based sampling, and aerial coverage path planning (ACPP). Regarding to map-based sampling, the approaches proposed consider workspaces with different shapes and surface characteristics. The workspace is sampled considering the sensor characteristics and a set of mission requirements. The algorithm applies different computational geometry approaches, providing a unique way to deal with workspaces with different shape and surface characteristics in order to be surveyed by one or more MUAVs. This feature introduces a previous optimization step before path planning. After that, the ACPP problem is theorized and a set of ACPP algorithms to compute the MUAVs trajectories are proposed. The problem addressed herein is the problem to coverage a wide area by using MUAVs with limited autonomy. Therefore, the mission must be accomplished in the shortest amount of time. The aerial survey is usually subject to a set of workspace restrictions, such as the take-off and landing positions as well as a safety distance between elements of the fleet. Moreover, it has to avoid forbidden zones to y. Three different algorithms have been studied to address this problem. The approaches studied are based on graph searching, heuristic and meta-heuristic approaches, e.g., mimic, evolutionary. Finally, an extended survey of field experiments applying the previous methods, as well as the materials and methods adopted in outdoor missions is presented. The reported outcomes demonstrate that the findings attained from this thesis improve ACPP mission for mapping purpose in an efficient and safe manner.
Resumo:
Si no tenemos en cuenta posibles procesos subyacentes con significado físico, químico, económico, etc., podemos considerar una serie temporal como un mero conjunto ordenado de valores y jugar con él algún inocente juego matemático como transformar dicho conjunto en otro objeto con la ayuda de una operación matemática para ver qué sucede: qué propiedades del conjunto original se conservan, cuáles se transforman y cómo, qué podemos decir de alguna de las dos representaciones matemáticas del objeto con sólo atender a la otra... Este ejercicio sería de cierto interés matemático por sí solo. Ocurre, además, que las series temporales son un método universal de extraer información de sistemas dinámicos en cualquier campo de la ciencia. Esto hace ganar un inesperado interés práctico al juego matemático anteriormente descrito, ya que abre la posibilidad de analizar las series temporales (vistas ahora como evolución temporal de procesos dinámicos) desde una nueva perspectiva. Hemos para esto de asumir la hipótesis de que la información codificada en la serie original se conserva de algún modo en la transformación (al menos una parte de ella). El interés resulta completo cuando la nueva representación del objeto pertencece a un campo de la matemáticas relativamente maduro, en el cual la información codificada en dicha representación puede ser descodificada y procesada de manera efectiva. ABSTRACT Disregarding any underlying process (and therefore any physical, chemical, economical or whichever meaning of its mere numeric values), we can consider a time series just as an ordered set of values and play the naive mathematical game of turning this set into a different mathematical object with the aids of an abstract mapping, and see what happens: which properties of the original set are conserved, which are transformed and how, what can we say about one of the mathematical representations just by looking at the other... This exercise is of mathematical interest by itself. In addition, it turns out that time series or signals is a universal method of extracting information from dynamical systems in any field of science. Therefore, the preceding mathematical game gains some unexpected practical interest as it opens the possibility of analyzing a time series (i.e. the outcome of a dynamical process) from an alternative angle. Of course, the information stored in the original time series should be somehow conserved in the mapping. The motivation is completed when the new representation belongs to a relatively mature mathematical field, where information encoded in such a representation can be effectively disentangled and processed. This is, in a nutshell, a first motivation to map time series into networks.
Resumo:
The impact of the Parkinson's disease and its treatment on the patients' health-related quality of life can be estimated either by means of generic measures such as the european quality of Life-5 Dimensions (EQ-5D) or specific measures such as the 8-item Parkinson's disease questionnaire (PDQ-8). In clinical studies, PDQ-8 could be used in detriment of EQ-5D due to the lack of resources, time or clinical interest in generic measures. Nevertheless, PDQ-8 cannot be applied in cost-effectiveness analyses which require generic measures and quantitative utility scores, such as EQ-5D. To deal with this problem, a commonly used solution is the prediction of EQ-5D from PDQ-8. In this paper, we propose a new probabilistic method to predict EQ-5D from PDQ-8 using multi-dimensional Bayesian network classifiers. Our approach is evaluated using five-fold cross-validation experiments carried out on a Parkinson's data set containing 488 patients, and is compared with two additional Bayesian network-based approaches, two commonly used mapping methods namely, ordinary least squares and censored least absolute deviations, and a deterministic model. Experimental results are promising in terms of predictive performance as well as the identification of dependence relationships among EQ-5D and PDQ-8 items that the mapping approaches are unable to detect
Resumo:
The IARC competitions aim at making the state of the art in UAV progress. The 2014 challenge deals mainly with GPS/Laser denied navigation, Robot-Robot interaction and Obstacle avoidance in the setting of a ground robot herding problem. We present in this paper a drone which will take part in this competition. The platform and hardware it is composed of and the software we designed are introduced. This software has three main components: the visual information acquisition, the mapping algorithm and the Aritificial Intelligence mission planner. A statement of the safety measures integrated in the drone and of our efforts to ensure field testing in conditions as close as possible to the challenge?s is also included.
Resumo:
Esta tesis considera dos tipos de aplicaciones del diseño óptico: óptica formadora de imagen por un lado, y óptica anidólica (nonimaging) o no formadora de imagen, por otro. Las ópticas formadoras de imagen tienen como objetivo la obtención de imágenes de puntos del objeto en el plano de la imagen. Por su parte, la óptica anidólica, surgida del desarrollo de aplicaciones de concentración e iluminación, se centra en la transferencia de energía en forma de luz de forma eficiente. En general, son preferibles los diseños ópticos que den como resultado sistemas compactos, para ambos tipos de ópticas (formadora de imagen y anidólica). En el caso de los sistemas anidólicos, una óptica compacta permite tener costes de producción reducidos. Hay dos razones: (1) una óptica compacta presenta volúmenes reducidos, lo que significa que se necesita menos material para la producción en masa; (2) una óptica compacta es pequeña y ligera, lo que ahorra costes en el transporte. Para los sistemas ópticos de formación de imagen, además de las ventajas anteriores, una óptica compacta aumenta la portabilidad de los dispositivos, que es una gran ventaja en tecnologías de visualización portátiles, tales como cascos de realidad virtual (HMD del inglés Head Mounted Display). Esta tesis se centra por tanto en nuevos enfoques de diseño de sistemas ópticos compactos para aplicaciones tanto de formación de imagen, como anidólicas. Los colimadores son uno de los diseños clásicos dentro la óptica anidólica, y se pueden utilizar en aplicaciones fotovoltaicas y de iluminación. Hay varios enfoques a la hora de diseñar estos colimadores. Los diseños convencionales tienen una relación de aspecto mayor que 0.5. Con el fin de reducir la altura del colimador manteniendo el área de iluminación, esta tesis presenta un diseño de un colimador multicanal. En óptica formadora de imagen, las superficies asféricas y las superficies sin simetría de revolución (o freeform) son de gran utilidad de cara al control de las aberraciones de la imagen y para reducir el número y tamaño de los elementos ópticos. Debido al rápido desarrollo de sistemas de computación digital, los trazados de rayos se pueden realizar de forma rápida y sencilla para evaluar el rendimiento del sistema óptico analizado. Esto ha llevado a los diseños ópticos modernos a ser generados mediante el uso de diferentes técnicas de optimización multi-paramétricas. Estas técnicas requieren un buen diseño inicial como punto de partida para el diseño final, que será obtenido tras un proceso de optimización. Este proceso precisa un método de diseño directo para superficies asféricas y freeform que den como resultado un diseño cercano al óptimo. Un método de diseño basado en ecuaciones diferenciales se presenta en esta tesis para obtener un diseño óptico formado por una superficie freeform y dos superficies asféricas. Esta tesis consta de cinco capítulos. En Capítulo 1, se presentan los conceptos básicos de la óptica formadora de imagen y de la óptica anidólica, y se introducen las técnicas clásicas del diseño de las mismas. El Capítulo 2 describe el diseño de un colimador ultra-compacto. La relación de aspecto ultra-baja de este colimador se logra mediante el uso de una estructura multicanal. Se presentará su procedimiento de diseño, así como un prototipo fabricado y la caracterización del mismo. El Capítulo 3 describe los conceptos principales de la optimización de los sistemas ópticos: función de mérito y método de mínimos cuadrados amortiguados. La importancia de un buen punto de partida se demuestra mediante la presentación de un mismo ejemplo visto a través de diferentes enfoques de diseño. El método de las ecuaciones diferenciales se presenta como una herramienta ideal para obtener un buen punto de partida para la solución final. Además, diferentes técnicas de interpolación y representación de superficies asféricas y freeform se presentan para el procedimiento de optimización. El Capítulo 4 describe la aplicación del método de las ecuaciones diferenciales para un diseño de un sistema óptico de una sola superficie freeform. Algunos conceptos básicos de geometría diferencial son presentados para una mejor comprensión de la derivación de las ecuaciones diferenciales parciales. También se presenta un procedimiento de solución numérica. La condición inicial está elegida como un grado de libertad adicional para controlar la superficie donde se forma la imagen. Basado en este enfoque, un diseño anastigmático se puede obtener fácilmente y se utiliza como punto de partida para un ejemplo de diseño de un HMD con una única superficie reflectante. Después de la optimización, dicho diseño muestra mejor rendimiento. El Capítulo 5 describe el método de las ecuaciones diferenciales ampliado para diseños de dos superficies asféricas. Para diseños ópticos de una superficie, ni la superficie de imagen ni la correspondencia entre puntos del objeto y la imagen pueden ser prescritas. Con esta superficie adicional, la superficie de la imagen se puede prescribir. Esto conduce a un conjunto de tres ecuaciones diferenciales ordinarias implícitas. La solución numérica se puede obtener a través de cualquier software de cálculo numérico. Dicho procedimiento también se explica en este capítulo. Este método de diseño da como resultado una lente anastigmática, que se comparará con una lente aplanática. El diseño anastigmático converge mucho más rápido en la optimización y la solución final muestra un mejor rendimiento. ABSTRACT We will consider optical design from two points of view: imaging optics and nonimaging optics. Imaging optics focuses on the imaging of the points of the object. Nonimaging optics arose from the development of concentrators and illuminators, focuses on the transfer of light energy, and has wide applications in illumination and concentration photovoltaics. In general, compact optical systems are necessary for both imaging and nonimaging designs. For nonimaging optical systems, compact optics use to be important for reducing cost. The reasons are twofold: (1) compact optics is small in volume, which means less material is needed for mass-production; (2) compact optics is small in size and light in weight, which saves cost in transportation. For imaging optical systems, in addition to the above advantages, compact optics increases portability of devices as well, which contributes a lot to wearable display technologies such as Head Mounted Displays (HMD). This thesis presents novel design approaches of compact optical systems for both imaging and nonimaging applications. Collimator is a typical application of nonimaging optics in illumination, and can be used in concentration photovoltaics as well due to the reciprocity of light. There are several approaches for collimator designs. In general, all of these approaches have an aperture diameter to collimator height not greater than 2. In order to reduce the height of the collimator while maintaining the illumination area, a multichannel design is presented in this thesis. In imaging optics, aspheric and freeform surfaces are useful in controlling image aberrations and reducing the number and size of optical elements. Due to the rapid development of digital computing systems, ray tracing can be easily performed to evaluate the performance of optical system. This has led to the modern optical designs created by using different multi-parametric optimization techniques. These techniques require a good initial design to be a starting point so that the final design after optimization procedure can reach the optimum solution. This requires a direct design method for aspheric and freeform surface close to the optimum. A differential equation based design method is presented in this thesis to obtain single freeform and double aspheric surfaces. The thesis comprises of five chapters. In Chapter 1, basic concepts of imaging and nonimaging optics are presented and typical design techniques are introduced. Readers can obtain an understanding for the following chapters. Chapter 2 describes the design of ultra-compact collimator. The ultra-low aspect ratio of this collimator is achieved by using a multichannel structure. Its design procedure is presented together with a prototype and its evaluation. The ultra-compactness of the device has been approved. Chapter 3 describes the main concepts of optimizing optical systems: merit function and Damped Least-Squares method. The importance of a good starting point is demonstrated by presenting an example through different design approaches. The differential equation method is introduced as an ideal tool to obtain a good starting point for the final solution. Additionally, different interpolation and representation techniques for aspheric and freeform surface are presented for optimization procedure. Chapter 4 describes the application of differential equation method in the design of single freeform surface optical system. Basic concepts of differential geometry are presented for understanding the derivation of partial differential equations. A numerical solution procedure is also presented. The initial condition is chosen as an additional freedom to control the image surface. Based on this approach, anastigmatic designs can be readily obtained and is used as starting point for a single reflective surface HMD design example. After optimization, the evaluation shows better MTF. Chapter 5 describes the differential equation method extended to double aspheric surface designs. For single optical surface designs, neither image surface nor the mapping from object to image can be prescribed. With one more surface added, the image surface can be prescribed. This leads to a set of three implicit ordinary differential equations. Numerical solution can be obtained by MATLAB and its procedure is also explained. An anastigmatic lens is derived from this design method and compared with an aplanatic lens. The anastigmatic design converges much faster in optimization and the final solution shows better performance.
Resumo:
Multiple-complete-digest mapping is a DNA mapping technique based on complete-restriction-digest fingerprints of a set of clones that provides highly redundant coverage of the mapping target. The maps assembled from these fingerprints order both the clones and the restriction fragments. Maps are coordinated across three enzymes in the examples presented. Starting with yeast artificial chromosome contigs from the 7q31.3 and 7p14 regions of the human genome, we have produced cosmid-based maps spanning more than one million base pairs. Each yeast artificial chromosome is first subcloned into cosmids at a redundancy of ×15–30. Complete-digest fragments are electrophoresed on agarose gels, poststained, and imaged on a fluorescent scanner. Aberrant clones that are not representative of the underlying genome are rejected in the map construction process. Almost every restriction fragment is ordered, allowing selection of minimal tiling paths with clone-to-clone overlaps of only a few thousand base pairs. These maps demonstrate the practicality of applying the experimental and software-based steps in multiple-complete-digest mapping to a target of significant size and complexity. We present evidence that the maps are sufficiently accurate to validate both the clones selected for sequencing and the sequence assemblies obtained once these clones have been sequenced by a “shotgun” method.
Resumo:
We present an approach to map large numbers of Tc1 transposon insertions in the genome of Caenorhabditis elegans. Strains have been described that contain up to 500 polymorphic Tc1 insertions. From these we have cloned and shotgun sequenced over 2000 Tc1 flanks, resulting in an estimated set of 400 or more distinct Tc1 insertion alleles. Alignment of these sequences revealed a weak Tc1 insertion site consensus sequence that was symmetric around the invariant TA target site and reads CAYATATRTG. The Tc1 flanking sequences were compared with 40 Mbp of a C. elegans genome sequence. We found 151 insertions within the sequenced area, a density of ≈1 Tc1 insertion in every 265 kb. As the rest of the C. elegans genome sequence is obtained, remaining Tc1 alleles will fall into place. These mapped Tc1 insertions can serve two functions: (i) insertions in or near genes can be used to isolate deletion derivatives that have that gene mutated; and (ii) they represent a dense collection of polymorphic sequence-tagged sites. We demonstrate a strategy to use these Tc1 sequence-tagged sites in fine-mapping mutations.
Resumo:
The core enzyme of Escherichia coli RNA polymerase acquires essential promoter recognition and transcription initiation activities by binding one of several σ subunits. To characterize the proximity between σ70, the major σ for transcription of the growth-related genes, and the core enzyme subunits (α2ββ′), we analyzed the protein-cutting patterns produced by a set of covalently tethered FeEDTA probes [FeBABE: Fe (S)-1-(p-bromoacetamidobenzyl)EDTA]. The probes were positioned in or near conserved regions of σ70 by using seven mutants, each carrying a single cysteine residue at position 132, 376, 396, 422, 496, 517, or 581. Each FeBABE-conjugated σ70 was bound to the core enzyme, which led to cleavage of nearby sites on the β and β′ subunits (but not α). Unlike the results of random cleavage [Greiner, D. P., Hughes, K. A., Gunasekera, A. H. & Meares, C. F. (1996) Proc. Natl. Acad. Sci. USA 93, 71–75], the cut sites from different probe-modified σ70 proteins are clustered in distinct regions of the subunits. On the β subunit, cleavage is observed in two regions, one between residues 383 and 554, including the conserved C and Rif regions; and the other between 854 and 1022, including conserved region G, regions of ppGpp sensitivity, and one of the segments forming the catalytic center of RNA polymerase. On the β′ subunit, the cleavage was identified within the sequence 228–461, including β′ conserved regions C and D (which comprise part of the catalytic center).
Resumo:
In 1859, in On the Origin of Species, Darwin broached what he regarded to be the most vexing problem facing his theory of evolution—the lack of a rich fossil record predating the rise of shelly invertebrates that marks the beginning of the Cambrian Period of geologic time (≈550 million years ago), an “inexplicable” absence that could be “truly urged as a valid argument” against his all embracing synthesis. For more than 100 years, the “missing Precambrian history of life” stood out as one of the greatest unsolved mysteries in natural science. But in recent decades, understanding of life's history has changed markedly as the documented fossil record has been extended seven-fold to some 3,500 million years ago, an age more than three-quarters that of the planet itself. This long-sought solution to Darwin's dilemma was set in motion by a small vanguard of workers who blazed the trail in the 1950s and 1960s, just as their course was charted by a few pioneering pathfinders of the previous century, a history of bold pronouncements, dashed dreams, search, and final discovery.