934 resultados para soil carbon
Resumo:
Climate controls upland habitats, soils and their associated ecosystem services; therefore, understanding possible changes in upland climatic conditions can provide a rapid assessment of climatic vulnerability over the next century. We used 3 different climatic indices that were optimised to fit the upland area classified by the EU as a Severely Disadvantaged Area (SDA) 1961–1990. Upland areas within the SDA covered all altitudinal ranges, whereas the maximum altitude of lowland areas outside of the SDA was ca. 300 m. In general, the climatic index based on the ratio between annual accumulated temperature (as a measure of growing season length) and annual precipitation predicted 96% of the SDA mapped area, which was slightly better than those indices based on annual or seasonal water deficit. Overall, all climatic indices showed that upland environments were exposed to some degree of change by 2071–2100 under UKCIP02 climate projections for high and low emissions scenarios. The projected area declined by 13 to 51% across 3 indices for the low emissions scenario and by 24 to 84% for the high emissions scenario. Mean altitude of the upland area increased by +11 to +86 m for the low scenario and +21 to +178 m for the high scenario. Low altitude areas in eastern and southern Great Britain were most vulnerable to change. These projected climatic changes are likely to affect upland habitat composition, long-term soil carbon storage and wider ecosystem service provision, although it is not yet possible to determine the rate at which this might occur.
Resumo:
A new global synthesis and biomization of long (>40 kyr) pollen-data records is presented, and used with simulations from the HadCM3 and FAMOUS climate models to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial–interglacial cycle. Global modelled (BIOME4) biome distributions over time generally agree well with those inferred from pollen data. The two climate models show good agreement in global net primary productivity (NPP). NPP is strongly influenced by atmospheric carbon dioxide (CO2) concentrations through CO2 fertilization. The combined effects of modelled changes in vegetation and (via a simple model) soil carbon result in a global terrestrial carbon storage at the Last Glacial Maximum that is 210–470 Pg C less than in pre-industrial time. Without the contribution from exposed glacial continental shelves the reduction would be larger, 330–960 Pg C. Other intervals of low terrestrial carbon storage include stadial intervals at 108 and 85 ka BP, and between 60 and 65 ka BP during Marine Isotope Stage 4. Terrestrial carbon storage, determined by the balance of global NPP and decomposition, influences the stable carbon isotope composition (δ13C) of seawater because terrestrial organic carbon is depleted in 13C. Using a simple carbon-isotope mass balance equation we find agreement in trends between modelled ocean δ13C based on modelled land carbon storage, and palaeo-archives of ocean δ13C, confirming that terrestrial carbon storage variations may be important drivers of ocean δ13C changes.
Resumo:
Improved understanding and prediction of the fundamental environmental controls on ecosystem service supply across the landscape will help to inform decisions made by policy makers and land-water managers. To evaluate this issue for a local catchment case study, we explored metrics and spatial patterns of service supply for water quality regulation, agriculture production, carbon storage, and biodiversity for the Macronutrient Conwy catchment. Methods included using ecosystem models such as LUCI and JULES, integration of national scale field survey datasets, earth observation products and plant trait databases, to produce finely resolved maps of species richness and primary production. Analyses were done with both 1x1 km gridded and subcatchment data. A common single gradient characterised catchment scale ecosystem services supply with agricultural production and carbon storage at opposing ends of the gradient as reported for a national-scale assessment. Species diversity was positively related to production due to the below national average productivity levels in the Conwy combined with the unimodal relationship between biodiversity and productivity at the national scale. In contrast to the national scale assessment, a strong reduction in water quality as production increased was observed in these low productive systems. Various soil variables were tested for their predictive power of ecosystem service supply. Soil carbon, nitrogen, their ratio and soil pH all had double the power of rainfall and altitude, each explaining around 45% of variation but soil pH is proposed as a potential metric for ecosystem service supply potential as it is a simple and practical metric which can be carried out in the field with crowd-sourcing technologies now available. The study emphasises the importance of considering multiple ecosystem services together due to the complexity of covariation at local and national scales, and the benefits of exploiting a wide range of metrics for each service to enhance data robustness.
Resumo:
As pastagens geralmente perdem seu potencial produtivo e vigor de rebrota nos primeiros anos, frequentemente associada à falta de adubação nitrogenada. O objetivo deste foi verificar o efeito de fontes e doses de adubação nitrogenada na atividade microbiana (carbono da biomassa microbiana e carbono do CO2 liberado) e na fertilidade do solo cultivado com Brachiaria brizantha cv. Xaraés. O delineamento experimental foi em blocos casualizados, em arranjo fatorial 3 x 4, envolvendo três fontes de nitrogênio (uréia, sulfato de amônio e Ajifer-L40) e quatro doses de nitrogênio (0, 100, 200 e 400 kg ha-1), nas profundidades 0 - 0,10 e 0,10 - 0,20 m, com três repetições. O aumento nas doses de nitrogênio, na camada 0,0 a 0,10 m de profundidade, reduziu os valores de pH, MO, K+, Ca2+, Mg2+, SB e V%. O Ajifer e a uréia elevaram os valores de Ca2+ na camada 0,10 - 0,20 m, e as doses de 100 e 200 kg ha-1 aumentaram os valores de Mg2+ e SB. em doses elevadas o sulfato de amônio acidificou o solo. A perda de carbono pela elevada atividade microbiana pode estar relacionado ao estresse metabólico devido à acidificação do solo. A aplicação de 100 kg ha-1 de nitrogênio acarretou as menores perdas de carbono pela atividade microbiana.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Brazil's Atlantic Forest ecosystem has been greatly affected by land use changes, with only 11.26% of its original vegetation cover remaining. Currently, Atlantic Forest restoration is receiving increasing attention because of its potential for carbon sequestration and the important role of soil carbon in the global carbon balance. Soil organic matter is also essential for physical, chemical and biological components of soil fertility and forest sustainability. This study evaluated the potential for soil recovery in contrasting restoration models using indigenous Atlantic Forest tree species ten years after their establishment. The study site is located in Botucatu municipality, São Paulo State-Brazil, in a loamy dystrophic Red-Yellow Argisol site (Typic Hapludult). Four treatments were compared: i) Control (Spontaneous Restoration); ii) Low Diversity (five fast-growing tree species established by direct seeding); iii) High Diversity (mixed plantings of 41 species established with seedlings) and; iv) Native Forest (well conserved neighboring forest fragment). The following soil properties were evaluated: (1) physical-texture, density and porosity; (2) chemical-C, N, P, S, K, Ca, Mg, Al and pH; (3) biological-microbial biomass. Litter nutrient concentrations (P, S, K, Ca and Mg) and C and N litter stocks were determined. Within ten years the litter C and N stocks of the Low Diversity treatment area were higher than Control and similar to those in both the High Diversity treatment and the Native Forest. Soil C stocks increased through time for both models and in the Control plots, but remained highest in the Native Forest. The methods of restoration were shown to have different effects on soil dynamics, mainly on chemical properties. These results show that, at least in the short-term, changes in soil properties are more rapid in a less complex system like the Low Diversity model than in the a High Species Diversity model. For both mixed plantation systems, carbon soil cycling can be reestablished, resulting in increases in carbon stocks in both soil and litter.
Resumo:
Decomposition of plant material influences soil aggregation dynamics in ways that are still poorly understood, especially for Oxisols, in which oxides are believed to play a dominant role. In an incubation experiment, we investigated (i) the effect of plant material addition from selected monocot and dicot species on soil organic C (SOC), carbohydrate composition, fungal and total microbial biomass, and aggregation of an Oxisol; and (ii) the relationship among these properties and C mineralization patterns. The experiment was carried out at 25 °C for 180 d after addition of 11 plant materials (4 g C kg-1 soil) and a control (no plant material added). Mineralization of C during the incubation was described considering two pools of C (labile and non-labile) using a first-order plus linear fitting. Compared to the control, corn materials showed larger pentose input, greater mineralization rates for the non-labile C pool (k), greater soil pentose content (xylose + arabinose) and larger mean weight diameter of soil water-stable aggregates at 180 d of incubation. These effects were independent of changes in SOC content, suggesting that total C accrual and macroaggregation may be decoupled processes in this Oxisol. Our results support the hypothesis that the non-labile plant C pool contributes to the long-lasting stability of macroaggregates of this Oxisol and that this effect is mediated by plant and soil pentoses. We propose that plant pentose content and the decomposition rate of the slow pool (k) are useful parameters for the prediction of plant effects on aggregation dynamics of Oxisols and the selection of soil conservation practices. © 2012.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV