954 resultados para software distribution in using status
Resumo:
Feed can easily be contaminated and colonized by fungi that use up the nutrients for their own metabolism and growth, producing secondary metabolites such as mycotoxins that are not eliminated throughout the feed processing. The major problems associated with mycotoxin contaminated animal feed are metabolic disturbances resulting in poor animal productivity. In addition, handling contaminated animal feed can also raise health issues regarding workers exposure to fungi and mycotoxins. The scope of this work was to characterize fungal distribution in 11 poultry feed samples. Twenty grams of feed were suspended in 180 mL of distilled water and homogenized during 20 minutes at 200 rpm. The washed supernatant was plated in malt extract agar (MEA) and dichloran glycerol agar base (DG18) media for morphological identification of the mycobiota present. Using macro- and microscopic analysis of the colonies, fungal contamination was evident in 72.7% of the analyzed poultry feed samples. Fungal load ranged from 0 to 13140 CFU/g, and the most prevalent species/genera were F. graminearum complex (71.1%), Penicillium sp. (11.6%), Cladosporium sp. (8.8%), and Fusarium poae (3.6%). In addition to these species, we also isolated Aspergillus sections Circumdati, Nigri and Aspergilli, and Mucor and Rhizopus genus albeit at a lower abundance. The data obtained showed that, besides high fungal contamination, mycotoxins contamination is probably a reality, particularly in the final product since mycotoxins resist to all the processing operations including thermal treatment. Additionally, data claimed attention for the probable co-exposure to fungi and mycotoxins of the workers in feed industries.
Resumo:
After a productivity decrease of established national export industries in Finland such as mobile and paper industries, innovative, smaller companies with the intentions to internationalize right from the start have been proliferating. For software companies early internationalization is an especially good opportunity, as Internet usage becomes increasingly homogeneous across borders and software products often do not need a physical distribution channel. Globalization also makes Finnish companies turn to unfamiliar export markets like Latin America, a very untraditional market for Finns. Relationships consisting of Finnish and Latin American business partners have therefore not been widely studied, especially from a new-age software company’s perspective. To study these partnerships, relationship marketing theory was taken into the core of the study, as its practice focuses mainly on establishing and maintaining relationships with stakeholders at a profit, so that the objectives of all parties are met, which is done by a mutual exchange and fulfillment of promises. The most important dimensions of relationship marketing were identified as trust, commitment and attraction, which were then focused on, as the study aims to understand the implications Latin American business culture has for the understanding, and hence, effective application of relationship marketing in the Latin American market. The question to be answered consecutively was how should the dimensions of trust, commitment and attraction be understood in business relationships in Latin America? The study was conducted by first joining insights given by Latin American business culture literature with overall theories on the three dimensions. Through pattern matching, these insights were compared to empirical evidence collected from business professionals of the Latin American market and from the experiences of Finnish software businesses that had recently expanded into the market. What was found was that previous literature on Latin American business culture had already named many implications for the relationship marketing dimensions that were relevant also for small Finnish software firms on the market. However, key findings also presented important new drivers for the three constructs. Local presence in the area where the Latin American partner is located was found to drive or enhance trust, commitment and attraction. High-frequency follow up procedures were in turn found to drive commitment and attraction. Both local presence and follow up were defined according to the respective evidence in the study. Also, in the context of Finnish software firms in relationships with Latin American partners, the national origins or the foreignness of the Finnish party was seen to enhance trust and attraction in the relationship
Resumo:
The blast furnace is the main ironmaking production unit in the world which converts iron ore with coke and hot blast into liquid iron, hot metal, which is used for steelmaking. The furnace acts as a counter-current reactor charged with layers of raw material of very different gas permeability. The arrangement of these layers, or burden distribution, is the most important factor influencing the gas flow conditions inside the furnace, which dictate the efficiency of the heat transfer and reduction processes. For proper control the furnace operators should know the overall conditions in the furnace and be able to predict how control actions affect the state of the furnace. However, due to high temperatures and pressure, hostile atmosphere and mechanical wear it is very difficult to measure internal variables. Instead, the operators have to rely extensively on measurements obtained at the boundaries of the furnace and make their decisions on the basis of heuristic rules and results from mathematical models. It is particularly difficult to understand the distribution of the burden materials because of the complex behavior of the particulate materials during charging. The aim of this doctoral thesis is to clarify some aspects of burden distribution and to develop tools that can aid the decision-making process in the control of the burden and gas distribution in the blast furnace. A relatively simple mathematical model was created for simulation of the distribution of the burden material with a bell-less top charging system. The model developed is fast and it can therefore be used by the operators to gain understanding of the formation of layers for different charging programs. The results were verified by findings from charging experiments using a small-scale charging rig at the laboratory. A basic gas flow model was developed which utilized the results of the burden distribution model to estimate the gas permeability of the upper part of the blast furnace. This combined formulation for gas and burden distribution made it possible to implement a search for the best combination of charging parameters to achieve a target gas temperature distribution. As this mathematical task is discontinuous and non-differentiable, a genetic algorithm was applied to solve the optimization problem. It was demonstrated that the method was able to evolve optimal charging programs that fulfilled the target conditions. Even though the burden distribution model provides information about the layer structure, it neglects some effects which influence the results, such as mixed layer formation and coke collapse. A more accurate numerical method for studying particle mechanics, the Discrete Element Method (DEM), was used to study some aspects of the charging process more closely. Model charging programs were simulated using DEM and compared with the results from small-scale experiments. The mixed layer was defined and the voidage of mixed layers was estimated. The mixed layer was found to have about 12% less voidage than layers of the individual burden components. Finally, a model for predicting the extent of coke collapse when heavier pellets are charged over a layer of lighter coke particles was formulated based on slope stability theory, and was used to update the coke layer distribution after charging in the mathematical model. In designing this revision, results from DEM simulations and charging experiments for some charging programs were used. The findings from the coke collapse analysis can be used to design charging programs with more stable coke layers.
Resumo:
The neurotoxin BMAA (β-N-methylamino-l-alanine) and its isomer DAB (2,4-diaminobutyric acid) have been detected in seafood worldwide, including in Thau lagoon (French Mediterranean Sea). A cluster of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease associated with BMAA, has also been observed in this region. Mussels, periphyton (i.e. biofilms attached to mussels) and plankton were sampled between July 2013 and October 2014, and analyzed using HILIC-MS/MS. BMAA, DAB and AEG (N-(2-aminoethyl)glycine) were found in almost all the samples of the lagoon. BMAA and DAB were present at 0.58 and 0.83, 2.6 and 3.3, 4.0 and 7.2 μg g−1 dry weight in plankton collected with nets, periphyton and mussels, respectively. Synechococcus sp., Ostreococcus tauri, Alexandrium catenella and eight species of diatoms were cultured and screened for BMAA and analogs. While Synechococcus sp., O. tauri and A. catenella did not produce BMAA under our culture conditions, four diatoms species contained both BMAA and DAB. Hence, diatoms may be a source of BMAA for mussels. Unlike other toxins produced by microalgae, BMAA and DAB were detected in significant amounts in tissues other than digestive glands in mussels.
Resumo:
The main purpose of this paper is to propose and test a model to assess the degree of conditions favorability in the adoption of agile methods to develop software where traditional methods predominate. In order to achieve this aim, a survey was applied on software developers of a Brazilian public retail bank. Two different statistical techniques were used in order to assess the quantitative data from the closed questions in the survey. The first, exploratory factorial analysis validated the structure of perspectives related to the agile model of the proposed assessment. The second, frequency distribution analysis to categorize the answers. Qualitative data from the survey opened question were analyzed with the technique of qualitative thematic content analysis. As a result, the paper proposes a model to assess the degree of favorability conditions in the adoption of Agile practices within the context of the proposed study.
Resumo:
Supplementary feeding is a widespread game management practice in several red deer (Cervus elaphus) populations, with important potential consequences on the biology of this species. InMediterranean ecosystems food supplementation occurs in the rutting period, when it may change mating system characteristics. We studied the role of food supplementation relative to natural resources in the spatial distribution, aggregation, and mean harem size of females in Iberian red deer (Cervus elaphus hispanicus) during the rut. We studied 30 red deer populations of southwestern Spain, 63% of which experienced supplementary feeding. Using multivariate spatial analyses we found that food supplementation affected distribution of females in 95% of the populations in which it occurred. Green meadows present during the mating season acted as an important natural resource influencing female distribution. Additionally, the level of female aggregation and mean harem size were significantly higher in those populations in which food supplementation determined female distribution than in populations in which female distribution did not depend on supplementary feeding. Because female aggregation and mean harem size are key elements in sexual selection, supplementary feeding may constitute an important anthropogenic element with potential evolutionary implications for populations of Iberian red deer.
Resumo:
Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections.
Resumo:
OBJECTIVE: To analyze the amount of glycosaminoglycans in the uterine cervix during each phase of the rat estrous cycle. DESIGN: Based on vaginal smears, forty female, regularly cycling rats were divided into four groups (n = 10 for each group): GI - proestrous, GII - estrous, GIII - metaestrous and GIV - diestrous. Animals were sacrificed at each phase of the cycle, and the cervix was immediately removed and submitted to biochemical extraction and determination of sulfated glycosaminoglycans and hyaluronic acid. The results were analyzed by ANOVA followed by the Bonferroni post-hoc test. RESULTS: The uterine cervix had the highest amount of total sulfated glycosaminoglycans and dermatan sulfate during the estrous phase (8.90 ± 0.55 mg/g of cetonic extract, p<0.001; and 8.86 ± 0.57 mg/g of cetonic extract, p<0.001). In addition, there was more heparan sulfate at the cervix during the proestrous phase (0.185 ± 0.03 mg/g of cetonic extract) than during any other phase (p<0.001). There were no significant changes in the concentration of hyaluronic acid in the uterine cervix during the estrous cycle. CONCLUSION: Our data suggest that the amount of total sulfated glycosaminoglycans may be influenced by hormonal fluctuations related to the estrous cycle, with dermatan sulfate and heparan sulfate being the glycosaminoglycans most sensitive to hormonal change.
Resumo:
This study presents the mass distribution for a sample of 18 late-type galaxies in nine Hickson compact groups. We used Ha rotation curves (RCs) from high-resolution two-dimensional velocity fields of Fabry-Perot observations and the J-band photometry from the Two Micron All Sky Survey, in order to determine the dark halo and the visible matter distributions. The study compares two halo density profiles, an isothermal core-like distribution, and a cuspy one. We also compare their visible and dark matter distributions with those of galaxies belonging to cluster and field galaxies coming from two samples: 40 cluster galaxies of Barnes et al. and 35 field galaxies of Spano et al. The central halo surface density is found to be constant with respect to the total absolute magnitude similar to what is found for the isolated galaxies. This suggests that the halo density is independent of galaxy type and environment. We have found that core-like density profiles better fit the RCs than cuspy-like ones. No major differences have been found between field, cluster, and compact group galaxies with respect to their dark halo density profiles.
Resumo:
In-situ measurements in convective clouds (up to the freezing level) over the Amazon basin show that smoke from deforestation fires prevents clouds from precipitating until they acquire a vertical development of at least 4 km, compared to only 1-2 km in clean clouds. The average cloud depth required for the onset of warm rain increased by similar to 350 m for each additional 100 cloud condensation nuclei per cm(3) at a super-saturation of 0.5% (CCN0.5%). In polluted clouds, the diameter of modal liquid water content grows much slower with cloud depth (at least by a factor of similar to 2), due to the large number of droplets that compete for available water and to the suppressed coalescence processes. Contrary to what other studies have suggested, we did not observe this effect to reach saturation at 3000 or more accumulation mode particles per cm(3). The CCN0.5% concentration was found to be a very good predictor for the cloud depth required for the onset of warm precipitation and other microphysical factors, leaving only a secondary role for the updraft velocities in determining the cloud drop size distributions. The effective radius of the cloud droplets (r(e)) was found to be a quite robust parameter for a given environment and cloud depth, showing only a small effect of partial droplet evaporation from the cloud's mixing with its drier environment. This supports one of the basic assumptions of satellite analysis of cloud microphysical processes: the ability to look at different cloud top heights in the same region and regard their r(e) as if they had been measured inside one well developed cloud. The dependence of r(e) on the adiabatic fraction decreased higher in the clouds, especially for cleaner conditions, and disappeared at r(e)>=similar to 10 mu m. We propose that droplet coalescence, which is at its peak when warm rain is formed in the cloud at r(e)=similar to 10 mu m, continues to be significant during the cloud's mixing with the entrained air, cancelling out the decrease in r(e) due to evaporation.
Resumo:
Elastic properties of freestanding porous silicon layers fabricated by electrochemical anodization were studied by Raman scattering. Different anodization currents provided different degrees of porosity in the nanometer scale. Raman lines corresponding to the longitudinal optical phonons of crystalline and amorphous phases were observed. The amorphous volume fraction increased and the phonon frequencies for both phases decreased with increasing porosity. A strain distribution model is proposed whose fit to the experimental results indicates that the increasing nanoscale porosity causes strain relaxation in the amorphous domains and strain buildup in the crystalline ones. The present analysis has significant implications on the estimation of the crystalline Si domain's characteristic size from Raman scattering data. (C) 2009 The Electrochemical Society. [DOI: 10.1149/1.3225832] All rights reserved.
Resumo:
The local order and distribution of Na in the mixed alkali metaphosphate glasses K(x)Na(1-x)PO(3) were analyzed, with the aim to identify segregation or a random mixture of both cation species. X-Ray photoelectron spectroscopy and several nuclear magnetic resonance (NMR) techniques were applied, including (31)P and (23)Na high-resolution spectroscopy, (23)Na triple quantum-MAS NMR, rotational echo double resonance between (31)P and (23)Na, and (23)Na NMR spin echo decay. The structural picture emerging from these results reveals the similarity in the local Na environments in the glasses but also subtle structural adjustments with increasing degree of K replacement. While both cations are intimately mixed at the atomic scale, the (23)Na spin echo decay data suggest a detectable like-cation preference in the spatial distribution of the ions. These structural properties are consistent with those determined in Li-Rb metaphosphates, indicating that the origin of the mixed alkali effect observed in the conductivity of Na-K metaphosphate glasses may also be explained by structurally blocked ion diffusion.
Resumo:
In low fertility tropical soils, boron (B) deficiency impairs fruit production. However, little information is available on the efficiency of nutrient application and use by trees. Therefore, this work verified the effects of soil and foliar applications of boron in a commercial citrus orchard. An experiment was conducted with fertigated 4-year-old `Valencia` sweet orange trees on `Swingle` citrumelo rootstock. Boron (isotopically-enriched 10B) was supplied to trees once or twice in the growing season, either dripped in the soil or sprayed on the leaves. Trees were sampled at different periods and separated into different parts for total B contents and 10B/11B isotope ratios analyses. Soil B applied via fertigation was more efficient than foliar application for the organs grown after the B fertilization. Recovery of labeled B by fruits was 21% for fertigation and 7% for foliar application. Residual effects of nutrient application in the grove were observed in the year after labeled fertilizer application, which greater proportions derived from the soil supply.
Resumo:
Background: The presence of the periodontal ligament (PDL) makes it possible to absorb and distribute loads produced during masticatory function and other tooth contacts into the alveolar process via the alveolar bone proper. However, several factors affect the integrity of periodontal structures causing the destruction of the connective matrix and cells, the loss of fibrous attachment, and the resorption of alveolar bone. Methods: The purpose of this study was to evaluate the stress distribution by finite element analysis in a PDL in three-dimensional models of the upper central incisor under three different load conditions: 100 N occlusal loading at 45 degrees (model 1: masticatory load); 500 N at the incisal edge at 45 degrees (model 2: parafunctional habit); and 800 N at the buccal surface at 90 degrees (model 3: trauma case). The models were built from computed tomography scans. Results: The stress distribution was quite different among the models. The most significant values (harmful) of tensile and compressive stresses were observed in models 2 and 3, with similarly distinct patterns of stress distributions along the PDL. Tensile stresses were observed along the internal and external aspects of the PDL, mostly at the cervical and middle thirds. Conclusions: The stress generation in these models may affect the integrity of periodontal structures. A better understanding of the biomechanical behavior of the PDL under physiologic and traumatic loading conditions might enhance the understanding of the biologic reaction of the PDL in health and disease. J Periodontol 2009;80:1859-1867.
Resumo:
Riparian forests are protected by Brazilian law to preserve rivers and their margins. A sugar cane field adjacent to a strip of young riparian forest bordering an older riparian forest along a stream was used to study the riparian forest as a buffer zone to prevent pesticides pollution. Concentrations of the herbicides diuron, hexazinone and tebuthiuron were determined in different soil layers of a Red Yellow Oxisol during 2003 and 2004. The determination was done by High Performance Liquid Chromatography with reverse phase C-18 column, through two mobile phases. Diuron and hexazinone concentration diminished between the sugar cane and riparian forest as buffer strip demonstrating a protective effect. However, tebuthiuron had about four times higher concentrations in the old riparian forest compared to the other areas. Concentrations were higher in the surface and decreased in deeper soil layers in the old riparian forest suggesting that this herbicide probably was introduced by air pollution. This pesticide concentrated in the canopy could be washed by rain to the soil adjacent to the stream. Our data suggest that climate conditions were responsible for enhanced volatilization exposing the old riparian forest to more air pollution that was captured by the higher canopy. (C) 2010 Elsevier B.V. All rights reserved.