955 resultados para single-wave function


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Also published as thesis (Ph.D.) Columbia university, 1918.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"January 1981."

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A numerical method is introduced to determine the nuclear magnetic resonance frequency of a donor (P-31) doped inside a silicon substrate under the influence of an applied electric field. This phosphorus donor has been suggested for operation as a qubit for the realization of a solid-state scalable quantum computer. The operation of the qubit is achieved by a combination of the rotation of the phosphorus nuclear spin through a globally applied magnetic field and the selection of the phosphorus nucleus through a locally applied electric field. To realize the selection function, it is required to know the relationship between the applied electric field and the change of the nuclear magnetic resonance frequency of phosphorus. In this study, based on the wave functions obtained by the effective-mass theory, we introduce an empirical correction factor to the wave functions at the donor nucleus. Using the corrected wave functions, we formulate a first-order perturbation theory for the perturbed system under the influence of an electric field. In order to calculate the potential distributions inside the silicon and the silicon dioxide layers due to the applied electric field, we use the multilayered Green's functions and solve an integral equation by the moment method. This enables us to consider more realistic, arbitrary shape, and three-dimensional qubit structures. With the calculation of the potential distributions, we have investigated the effects of the thicknesses of silicon and silicon dioxide layers, the relative position of the donor, and the applied electric field on the nuclear magnetic resonance frequency of the donor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reported are observations and measurements of the inscription of fibre Bragg gratings in two different types of microstructured polymer optical fibre: few-moded and endlessly single mode. Contrary to FBG inscription in silica microstructured fibre, where high energy laser pulses are a prerequisite, we have successfully used a low power CW laser source operating at 325nm to produce 1-cm long gratings with a reflection peak at 1570 nm. Peak reflectivities of more than 10% have been observed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We measure complex amplitude of scattered wave in the far field, and justify theoretically and numerically solution of the inverse scattering problem. This allows single-shot reconstructing of dielectric function distribution during direct femtosecond laser micro-fabrication.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Previous contrast discrimination experiments have shown that luminance contrast is summed across ocular (T. S. Meese, M. A. Georgeson, & D. H. Baker, 2006) and spatial (T. S. Meese & R. J. Summers, 2007) dimensions at threshold and above. However, is this process sufficiently general to operate across the conjunction of eyes and space? Here we used a "Swiss cheese" stimulus where the blurred "holes" in sine-wave carriers were of equal area to the blurred target ("cheese") regions. The locations of the target regions in the monocular image pairs were interdigitated across eyes such that their binocular sum was a uniform grating. When pedestal contrasts were above threshold, the monocular neural images contained strong evidence that the high-contrast regions in the two eyes did not overlap. Nevertheless, sensitivity to dual contrast increments (i.e., to contrast increments in different locations in the two eyes) was a factor of ∼1.7 greater than to single increments (i.e., increments in a single eye), comparable with conventional binocular summation. This provides evidence for a contiguous area summation process that operates at all contrasts and is influenced little, if at all, by eye of origin. A three-stage model of contrast gain control fitted the results and possessed the properties of ocularity invariance and area invariance owing to its cascade of normalization stages. The implications for a population code for pattern size are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We measure complex amplitude of scattered wave in the far field, and justify theoretically and numerically solution of the inverse scattering problem. This allows single-shot reconstructing of dielectric function distribution during direct femtosecond laser micro-fabrication.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We measure complex amplitude of scattered wave in the far field, and justify theoretically and numerically solution of the inverse scattering problem. This allows single-shot reconstructing of dielectric function distribution during direct femtosecond laser micro-fabrication.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report observations and measurements of the inscription of fiber Bragg gratings (FBGs) in two different types of microstructured polymer optical fiber: few-mode and an endlessly single mode. Contrary to the FBG inscription in silica microstructured fiber, where high-energy laser pulses are a prerequisite, we have successfully used a low-power cw laser source operating at 325 nm to produce 1 cm long gratings with a reflection peak at 1570 nm. Peak reflectivities of more than 10% have been observed. © 2005 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mathematics Subject Classification: 35J05, 35J25, 35C15, 47H50, 47G30

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).