894 resultados para simulation methods


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Estimating rare events from zero-heavy data (data with many zero values) is a common challenge in fisheries science and ecology. For example, loggerhead sea turtles (Caretta caretta) and leatherback sea turtles (Dermochelys coriacea) account for less than 1% of total catch in the U.S. Atlantic pelagic longline fishery. Nevertheless, the Southeast Fisheries Science Center (SEFSC) of the National Marine Fisheries Service (NMFS) is charged with assessing the effect of this fishery on these federally protected species. Annual estimates of loggerhead and leatherback bycatch in a fishery can affect fishery management and species conservation decisions. However, current estimates have wide confidence intervals, and their accuracy is unknown. We evaluate 3 estimation methods, each at 2 spatiotemporal scales, in simulations of 5 spatial scenarios representing incidental capture of sea turtles by the U.S. Atlantic pelagic longline fishery. The delta-log normal method of estimating bycatch for calendar quarter and fishing area strata was the least biased estimation method in the spatial scenarios believed to be most realistic. This result supports the current estimation procedure used by the SEFSC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Inflatable aerodynamic decelerators have potential advantages for planetary re-entry in robotic and human exploration missions. It is theorized that volume-mass characteristics of these decelerators are superior to those of common supersonic/subsonic parachutes and after deployment they may suffer no instabilities at high Mach numbers. A high fidelity computational fluid-structure interaction model is employed to investigate the behavior of tension cone inflatable aeroshells at supersonic speeds up to Mach 2.0. The computational framework targets the large displacements regime encountered during the inflation of the decelerator using fast level set techniques to incorporate boundary conditions of the moving structure. The preliminary results indicate large but steady aeroshell displacement with rich dynamics, including buckling of the inflatable torus that maintains the decelerator open under normal operational conditions, owing to interactions with the turbulent wake. Copyright © 2009 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we engage a Lagrangian, particle-based CFD method, named Smoothed Particle Hydrodynamic (SPH) to study the solitary wave motion and its impact on coastal structures. Two-dimensional weakly compressible and incompressible SPH models were applied to simulate wave impacting on seawall and schematic coastal house. The results confirmed the accuracy of both models for predicting the wave surface profiles. The incompressible SPH model performed better in predicting the pressure field and impact loadings on coastal structures than the weakly compressible SPH model. The results are in qualitatively agreement with experimental results. Copyright © 2011 by the International Society of Offshore and Polar Engineers (ISOPE).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The atomistic pseudopotential quantum mechanical calculations are used to study the transport in million atom nanosized metal-oxide-semiconductor field-effect transistors. In the charge self-consistent calculation, the quantum mechanical eigenstates of closed systems instead of scattering states of open systems are calculated. The question of how to use these eigenstates to simulate a nonequilibrium system, and how to calculate the electric currents, is addressed. Two methods to occupy the electron eigenstates to yield the charge density in a nonequilibrium condition are tested and compared. One is a partition method and another is a quasi-Fermi level method. Two methods are also used to evaluate the current: one uses the ballistic and tunneling current approximation, another uses the drift-diffusion method. (C) 2009 American Institute of Physics. [doi:10.1063/1.3248262]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Kineticist's Workbench is a computer program currently under development whose purpose is to help chemists understand, analyze, and simplify complex chemical reaction mechanisms. This paper discusses one module of the program that numerically simulates mechanisms and constructs qualitative descriptions of the simulation results. These descriptions are given in terms that are meaningful to the working chemist (e.g., steady states, stable oscillations, and so on); and the descriptions (as well as the data structures used to construct them) are accessible as input to other programs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tool must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case based on California Independent System Operator (CAISO) data concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the context of multivariate regression (MLR) and seemingly unrelated regressions (SURE) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. in this paper, we propose finite-and large-sample likelihood-based test procedures for possibly non-linear hypotheses on the coefficients of MLR and SURE systems.