987 resultados para silver-loaded TiO2


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel burn wound hydrogel dressing has been previously developed which is composed of 2-acrylamido-2-methylpropane sulfonic acid sodium salt with silver nanoparticles. This study compared the antimicrobial efficacy of this novel dressing to two commercially available silver dressings; Acticoat™ and PolyMem Silver(®). Three different antimicrobial tests were used: disc diffusion, broth culture, and the Live/Dead(®) Baclight™ bacterial viability assay. Burn wound pathogens (P. aeruginosa, MSSA, A. baumannii and C. albicans) and antibiotic resistant strains (MRSA and VRE) were tested. All three antimicrobial tests indicated that Acticoat™ was the most effective antimicrobial agent, with inhibition zone lengths of 13.9-18.4mm. It reduced the microbial inocula below the limit of detection (10(2)CFU/ml) and reduced viability by 99% within 4h. PolyMem Silver(®) had no zone of inhibition for most tested micro-organisms, and it also showed poor antimicrobial activity in the broth culture and Live/Dead(®) Baclight™ assays. Alarmingly, it appeared to promote the growth of VRE. The silver hydrogel reduced most of the tested microbial inocula below the detection limit and decreased bacterial viability by 94-99% after 24h exposure. These results support the possibility of using this novel silver hydrogel as a burn wound dressing in the future

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon-supported Pt-TiO2 (Pt-TiO2/C) catalysts with varying at. wt ratios of Pt to Ti, namely, 1:1, 2:1, and 3:1, are prepared by the sol-gel method. The electrocatalytic activity of the catalysts toward oxygen reduction reaction (ORR), both in the presence and absence of methanol, is evaluated for application in direct methanol fuel cells (DMFCs). The optimum at. wt ratio of Pt to Ti in Pt-TiO2/C is established by fuel cell polarization, linear sweep voltammetry, and cyclic voltammetry studies. Pt-TiO2/C heattreated at 750 degrees C with Pt and Ti in an at. wt ratio of 2:1 shows enhanced methanol tolerance, while maintaining high catalytic activity toward ORR. The DMFC with a Pt-TiO2/C cathode catalyst exhibits an enhanced peak power density of 180 mW/cm(2) in contrast to the 80 mW/cm(2) achieved from the DMFC with carbon-supported Pt catalyst while operating under identical conditions. Complementary data on the influence of TiO2 on the crystallinity of Pt, surface morphology, and particle size, surface oxidation states of individual constituents, and bulk and surface compositions are also obtained by powder X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive analysis by X-ray, and inductively coupled plasm optical emission spectrometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lignin is a complex plant polymer synthesized through co-operation of multiple intracellular and extracellular enzymes. It is deposited to plant cell walls in cells where additional strength or stiffness are needed, such as in tracheary elements (TEs) in xylem, supporting sclerenchymal tissues and at the sites of wounding. Class III peroxidases (POXs) are secreted plant oxidoreductases with implications in many physiological processes such as the polymerization of lignin and suberin and auxin catabolism. POXs are able to oxidize various substrates in the presence of hydrogen peroxide, including lignin monomers, monolignols, thus enabling the monolignol polymerization to lignin by radical coupling. Trees produce large amounts of lignin in secondary xylem of stems, branches and roots. In this study, POXs of gymnosperm and angiosperm trees were studied in order to find POXs which are able to participate in lignin polymerization in developing secondary xylem i.e. are located at the site of lignin synthesis in tree stems and have the ability to oxidize monolignol substrates. Both in the gymnosperm species, Norway spruce and Scots pine, and in the angiosperm species silver birch the monolignol oxidizing POX activities originating from multiple POX isoforms were present in lignifying secondary xylem in stems during the period of annual growth. Most of the partially purified POXs from Norway spruce and silver birch xylem had highest oxidation rate with coniferyl alcohol, the main monomer in guaiacyl-lignin in conifers. The only exception was the most anionic POX fraction from silver birch, which clearly preferred sinapyl alcohol, the lignin monomer needed in the synthesis of syringyl-guaiacyl lignin in angiosperm trees. Three full-length pox cDNAs px1, px2 and px3 were cloned from the developing xylem of Norway spruce. It was shown that px1 and px2 are expressed in developing tracheids in spruce seedlings, whereas px3 transcripts were not detected suggesting low transcription level in young trees. The amino acid sequences of PX1, PX2 and PX3 were less than 60% identical to each other but showed up to 84% identity to other known POXs. They all begin with predicted N-terminal secretion signal (SS) peptides. PX2 and PX3 contained additional putative vacuolar localization determinants (VSDs) at C-terminus. Transient expression of EGFP-fusions of the SS- and VSD-peptides in tobacco protoplasts showed SS-peptides directed EGFP to secretion in tobacco cells, whereas only the PX2 C-terminal peptide seems to be a functional VSD. According to heterologous expression of px1 in Catharanthus roseus hairy roots, PX1 is a guaicol-oxidizing POX with isoelectric point (pI) approximately 10, similar to monolignol oxidizing POXs in protein extracts from Norway spruce lignifying xylem. Hence, PX1 has characteristics for participation to monolignol dehydrogenation in lignin synthesis, whereas the other two spruce POXs seem to have some other functions. Interesting topics in future include functional characterization of syringyl compound oxidizing POXs and components of POX activity regulation in trees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic layer deposition was used to obtain TiO2 thin films on Si (100) and fused quartz, using a novel metal organic precursor. The films were grown at 400 degrees C, varying the amount of oxygen used as the reactive gas. X-ray diffraction showed the films to be crystalline, with a mixture of anatase and rutile phases. To investigate their optical properties, ellipsometric measurements were made in the UV-Vis-NIR range (300-1700 nm). Spectral distribution of various optical constants like refractive index (n), absorption index (k), transmittance (T), reflectance (R), absorption (A) were calculated by employing Bruggemann's effective medium approximation (BEMA) and Maxwell-Garnet effective medium approximation, in conjunction with the Cauchy and Forouhi-Bloomer (FB) dispersion relations. A layered optical model has been proposed which gives the thickness, elemental and molecular composition, amorphicity and roughness (morphology) of the TiO2 film surface and and the film/substrate interface, as a function of oxygen flow rate The spectral distribution of the optical band gap (E-g(opt)), complex dielectric constants (epsilon' and epsilon''), and optical conductivity (sigma(opt)), has also been determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) nanotubes are appealing to research communities due to their excellent functional properties. However, there is still a lack of understanding of their mechanical properties. In this work, we conduct molecular dynamics (MD) simulations to investigate the mechanical behaviour of rutile and amorphous TiO2 nanotubes. The results indicate that the rutile TiO2 nanotube has a much higher Young's modulus (∼800 GPa) than the amorphous one (∼400 GPa). Under tensile loading, rutile nanotubes fail in the form of brittle fracture but significant ductility (up to 30%) has been observed in amorphous nanotubes. This is attributed to a unique ‘repairing’ mechanism via bond reconstruction at under-coordinated sites as well as bond conversion at over-coordinated sites. In addition, it is observed that the fracture strength of rutile nanotubes is strongly dependent on their free surfaces. These findings are considered to be useful for development of TiO2 nanostructures with improved mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe here a rapid, energy-efficient, green and economically scalable room temperature protocol for the synthesis of silver nanoparticles. Tannic acid, a polyphenolic compound derived from plant extracts is used as the reducing agent. Silver nanoparticles of mean size ranging from 3.3 to 22.1 nm were synthesized at room temperature by the addition of silver nitrate to tannic acid solution maintained at an alkaline pH. The mean size was tuned by varying the molar ratio of tannic acid to silver nitrate. We also present proof of concept results demonstrating its suitability for room temperature continuous flow processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline TiO2 films have been synthesized on glass and silicon substrates by sol-gel technique. The films have been characterized with optical reflectance/transmittance in the wavelength range 300-1000nm and the optical constants (n, k) were estimated by using envelope technique as well as spectroscopic ellipsometry. Morphological studies have been carried Out using atomic force microscope (AFM). Metal-Oxide-Silicon (MOS) capacitor was fabricated using conducting coating on TiO2 film deposited on silicon. The C-V measurements show that the film annealed at 300 degrees C has a dielectric constant of 19.80. The high percentage of transmittance, low surface roughness and high dielectric constant suggests that it can be used as an efficient anti-reflection coating on silicon and other optical coating applications and also as a MOS capacitor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient and effective growth factor (GF) delivery is an ongoing challenge for tissue regeneration therapies. The accurate quantification of complex molecules such as GFs, encapsulated in polymeric delivery devices, is equally critical and just as complex as achieving efficient delivery of active GFs. In this study, GFs relevant to bone tissue formation, vascular endothelial growth factor (VEGF) and bone morphogenetic protein 7 (BMP-7), were encapsulated, using the technique of electrospraying, into poly(lactic-co-glycolic acid) microparticles that contained poly(ethylene glycol) and trehalose to assist GF bioactivity. Typical quantification procedures, such as extraction and release assays using saline buffer, generated a significant degree of GF interactions, which impaired accurate assessment by enzyme-linked immunosorbent assay (ELISA). When both dry BMP-7 and VEGF were processed with chloroform, as is the case during the electrospraying process, reduced concentrations of the GFs were detected by ELISA; however, the biological effect on myoblast cells (C2C12) or endothelial cells (HUVECs) was unaffected. When electrosprayed particles containing BMP-7 were cultured with preosteoblasts (MC3T3-E1), significant cell differentiation into osteoblasts was observed up to 3 weeks in culture, as assessed by measuring alkaline phosphatase. In conclusion, this study showed how electrosprayed microparticles ensured efficient delivery of fully active GFs relevant to bone tissue engineering. Critically, it also highlights major discrepancies in quantifying GFs in polymeric microparticle systems when comparing ELISA with cell-based assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-step process was used for the preparation of gold and silver nanoparticles stabilized by an aminophthalocyanine macrocycle. The resultant nanoparticles were characterized by absorption spectra, infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The nanoparticles were found to possess relatively narrow size distribution. The gold nanoparticles have an average diameter of similar to 2 nm, while silver particles have 4-5 nm. Preliminary studies on fluorescence and surface enhanced Raman spectroscopy were carried out using these nanoparticles. Fluorescence studies indicate that gold nanoparticles do not quench the fluorescence, while silver nanoparticles do. The stabilized nanoparticles showed enhancement of the Raman signals, thus revealing that they are good substrates for surface enhanced Raman scattering studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-doped TiO2 nanofibres were observed to possess lower aerobic oxidation activity than undoped TiO2 nanofibres in the selective photocatalytic aerobic oxidation of enzylamine and 4-methoxybenzyl alcohol. This was attributed to the reduction free energy of O2 adsorption in the vicinity of nitrogen dopant sites, as indicated by density functional theory (DFT) calculations when three-coordinated oxygen atoms are substituted by nitrogen atoms. It was found that the activity recovered following a controlled calcination of the N-doped NFs in air. The dependence of the conversion of benzylamine and 4-methoxybenzyl alcohol on the intensity of light irradiation confirmed that these reactions were driven by light. Action spectra showed that the two oxidation reactions are responsive to light from the UV region through to the visible light irradiation range. The extended light absorption wavelength range in these systems compared to pure TiO2 materials was found to result from the formation of surface complex species following adsorption of reactants onto the catalysts' surface, evidenced by the in situ IR experiment. Both catalytic and in situ IR results reveal that benzaldehyde is the intermediate in the aerobic oxidation of benzylamine to N-benzylidenebenzylamine process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The silver-headed antechinus (Antechinus argentus) is one of Australia’s most recently described mammals, and the single known population at Kroombit Tops in south-east Queensland is threatened. Nothing is known of the species’ ecology, so during 2014 we collected faecal pellets each month (March–September) from a population at the type locality to gather baseline data on diet composition. A total of 38 faecal pellets were collected from 12 individuals (eight females, four males) and microscopic analysis of pellets identified seven invertebrate orders, with 70% combined mean composition of beetles (Coleoptera: 38%) and cockroaches (Blattodea: 32%). Other orders that featured as prey were ants, crickets/grasshoppers, butterflies/moths, spiders, and true bugs. Given that faecal pellets could only be collected from a single habitat type (Eucalyptus montivaga high-altitude open forest) and location, this is best described as a generalist insectivorous diet that is characteristic of other previously studied congeners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fabrication of multilayer ultrathin composite films composed of nanosized titanium dioxide particles (P25, Degussa) and polyelectrolytes (PELs), such as poly(allyl amine hydrochloride) (PAH) and poly(styrene sulfonate sodium salt) (PSS), on glass substrates using the layer-by-layer (LbL) assembly technique and its potentia application for the photodegradation of rhodamine B under ultraviolet (UV) irradiation has been reported. The polyelectrolytes and TiO2 were deposited on glass substrates at pH 2.5 and the growth of the multilayers was studied using UV/vis speccrophotometer. Thicknes measurements of the films showed a linear increase in film thickness with increase in number of bilayers. The surface microstructure of the thin films was characterized by field emission scanning electron microscope. The ability of the catalysts immobilized by this technique was compared with TiO2 films prepared by drop casting and spin coating methods. Comparison has been made in terms of film stability and photodegradation of rhodamine B. Process variables such as the effect of surface area of the multilayers, umber of bilayers, and initial dye concentration on photodegradation of rhodamine B were studied. Degradation efficiency increased with increase in number of catalysts (total surface area) and bilayers. Kinetics analysis indicated that the photodegradation rates follow first order kinetics. Under maximum loading of TiO2, with five catalyst slides having 20 bilayers of polyelectrolyte/TiO2 on each, 100 mL of 10 mg/L dye solution could be degraded completely in 4 h. The same slides could be reused with the same efficiency for several cycles. This study demonstrates that nanoparticles can be used in wastewater treatment using a simple immobilization technique. This makes the process an attractive option for scale up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous titanium dioxide synthesized with a bicontinuous surfactant template is a promising method that leads to a high active surface area electrode. The template used is based on a water/isooctane/dioctyl sodium sulfosuccinate salt together with lecithin. Several parameters were varied during the synthesis to understand and optimize channel formation mechanisms. The material is patterned in stacked conical channels, widening towards the centre of the grains. The active surface area increased by 116% when the concentration of alkoxide precursors was decreased and increased by 241% when the template formation temperature was decreased to 10C. Increasing the oil phase viscosity tends to widen the pore aperture, thus decreasing the overall active surface area. Changing the phase proportions alters the microemulsion integrity and disrupts channel formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional (3D) hierarchical nanoscale architectures comprised of building blocks, with specifically engineered morphologies, are expected to play important roles in the fabrication of 'next generation' microelectronic and optoelectronic devices due to their high surface-to-volume ratio as well as opto-electronic properties. Herein, a series of well-defined 3D hierarchical rutile TiO2 architectures (HRT) were successfully prepared using a facile hydrothermal method without any surfactant or template, simply by changing the concentration of hydrochloric acid used in the synthesis. The production of these materials provides, to the best of our knowledge, the first identified example of a ledgewise growth mechanism in a rutile TiO2 structure. Also for the first time, a Dye-sensitized Solar Cell (DSC) combining a HRT is reported in conjunction with a high-extinction-coefficient metal-free organic sensitizer (D149), achieving a conversion efficiency of 5.5%, which is superior to ones employing P25 (4.5%), comparable to state-of-the-art commercial transparent titania anatase paste (5.8%). Further to this, an overall conversion efficiency 8.6% was achieved when HRT was used as the light scattering layer, a considerable improvement over the commercial transparent/reflector titania anatase paste (7.6%), a significantly smaller gap in performance than has been seen previously.