950 resultados para shell beds
Resumo:
Members of the Brock University Rowing Club and their new $3000 shell, named Cete, meaning a group of Badgers. Tony Biernacki is pictured here pouring pond water onto the shell in a mock christening.
Resumo:
A comprehensive elemental, isotopic and microstructural analyses was undertaken of brachiopod calcites from the Hamilton Group (Middle Devonian), Clinton Group (Middle Silurian) and Middle to Upper Ordovician strata of Ontario and New York State. The majority of specimens were microstructurally and chemically preserved in a pristine state, although a number of specimens show some degree of post-depositional alteration. Brachiopod calcites from the Hamilton and Clinton Groups were altered by marine derived waters whereas Trenton Group (Middle Ordovician) brachiopods altered in meteorically derived fluids. Analysis of the elemental and isotopic compositions of pristine Hamilton Group brachiopods indicates there are several chemical relationships inherent to brachiopod calcite. Taxonomic differentiation of Mg, Sr and Na contents was evident in three co-occuring species from the Hamilton Group. Mean Mg contents of pristine brachiopods were respectively Athyris spiriferoides (1309ppm), Mucrospirifer mucronatus (1035ppm) and Mediospirifer audacula (789ppm). Similarly, taxonomic differentiation of shell calcite compositions was observed in co-occuring brachiopods from the Clinton Group (Middle Silurian) and the Trenton Group (Middle Ordovician). The taxonomic control of elemental regulation into shell calcite is probably related to the slightly different physiological systems and secretory mechanisms. A relationship was observed in Hamilton Group species between the depth of respective brachiopod communities and their Mg, Sr and Na contents. These elements were depleted in the shell calcites of deeper brachiopods compared to their counterparts in shallower reaches. Apparently shell calcite elemental composition is related to environmental conditions of the depositional setting, which may have controlled the secretory regime, mineral morphology of shell calcite and precipitation rates of each species. Despite the change in Mg, Sr and Na contents between beds and formations in response to environmental conditions, the taxonomic differentiation of shell calcite composition is maintained. Thus, it may be possible to predict relative depth changes in paleoenvironmental reconstructions using brachiopod calcite. This relationship of brachiopod chemistry to depth was also tested within a transgressiveregressive (T-R) cycle in the Rochester Shale Formation (Middle Silurian). Decreasing Mg, Sr and Na contents were observed in the transition from the shallow carbonates of the Irondequoit Formation to the deeper shales of the lowest 2 m of Rochester Shale. However, no isotopic and elemental trends were observed within the entire T-R cycle which suggests that either the water conditions did not change significantly or that the cycle is illusory. A similar relationship was observed between the Fe and Mn chemistries of shell calcite and redox/paleo-oxygen conditions. Hamilton Group brachiopods analysed from deeper areas of the shelf are enriched in Mn and Fe relative to those from shallow zones. The presence of black shales and dysaerobic faunas, during deposition of the Hamilton Group, suggests that the waters of the northern Appalachian Basin were stratified. The deeper brachiopods were marginally positioned above an oxycline and their shell calcites reflect periodic incursions of oxygen depleted water. Furthermore, analysis of Dalmanella from the black shales of the Collingwood Shale (Upper Ordovician) in comparison to those from the carbonates of the Verulam Formation (Middle Ordovician) confirm the relationship of Fe and Mn contents to periodic but not permanent incursions of low oxygen waters. The isotopic compositions of brachiopod calcite found in Hamilton Group (813C; +2.5% 0 to +5.5% 0; 8180 -2.50/00 to -4.00/00) and Clinton Group (813C; +4.00/00 to +6.0; 8180; -1.8% 0 to -3.60/ 00) are heavier than previously reported. Uncorrected paleotemperatures (assuming normal salinity, 0% 0 SMOW and no fractionation effects) derived from these isotopic values suggest that the Clinton sea temperature (Middle Silurian) ranged from 18°C to 28°C and Hamilton seas (Middle Devonian) ranged between 24°C and 29°C. In addition, the isotopic variation of brachiopod shell calcite is significant and is related to environmental conditions. Within a single time-correlative shell bed (the Demissa Bed; Hamilton Group) a positive isotopic shift of 2-2.5% 0 in 013C compositions and a positive shift of 1.0-1.50/00 in 0180 composition of shell calcite is observed, corresponding with a deepening of brachiopod habitats toward the axis of the Appalachian Basin. Moroever, a faunal succession from deeper Ambocoelia dominated brachiopod association to a shallow Tropidoleptus dominated assocation is reflected by isotopic shifts of 1.0-1.50/00. Although, other studies have emphasized the significance of ±20/oo shifts in brachiopod isotopic compositions, the recognition of isotopic variability in brachiopod calcite within single beds and within depositional settings such as the Appalachian Basin has important implications for the interpretation of secular isotopic trends. A significant proportion of the variation observed isotopic distribution during the Paleozoic is related to environmental conditions within the depositional setting.
Resumo:
This work envisages the fermentation of prawn shell waste into a more nutritious product with simpler components for application as a feed ingredient in aquaculture. This product would be a rich source of protein along with chitin, minerals, vitamins and N-acetyl glucosamine. A brief description of the various processing (chemical and bioprocess) methods employed for chitin, chitosan and single sell protein preparations from shell waste. It deals with the isolation of micro flora associated with prawn shell degradation. It describes the methods adopted for fermentation of prawn shell degradation and fermentation of prawn shell waste with the selected highly chitinoclastic strains. The comparison of SSF and SmF for each selected strain in terms of enrichment of protein, lipid and carbohydrate in the fermented product was done. Detailed analysis of product quality is discussed. The feed for mulation and feeding experiment explained in detail. Statistical analysis of various biogrowth parameters was done with Duncan’s multiple range test. Very briefly explains 28 days of feeding experiment. A method for the complete utilization of shell waste explains with the help of experiments.
Resumo:
This thesis presents a detailed account of a cost - effective approach towards enhanced production of alkaline protease at profitable levels using different fermentation designs employing cheap agro-industrial residues. It involves the optimisation of process parameters for the production of a thermostable alkaline protease by Vibrio sp. V26 under solid state, submerged and biphasic fermentations, production of the enzyme using cell immobilisation technology and the application of the crude enzyme on the deproteinisation of crustacean waste.The present investigation suggests an economic move towards Improved production of alkaline protease at gainful altitudes employing different fermentation designs utilising inexpensive agro-industrial residues. Moreover, the use of agro-industrial and other solid waste substrates for fermentation helps to provide a substitute in conserving the already dwindling global energy resources. Another alternative for accomplishing economically feasible production is by the use of immobilisation technique. This method avoids the wasteful expense of continually growing microorganisms. The high protease producing potential of the organism under study ascertains their exploitation in the utilisation and management of wastes. However, strain improvement studies for the production of high yielding variants using mutagens or by gene transfer are required before recommending them to Industries.Industries, all over the world, have made several attempts to exploit the microbial diversity of this planet. For sustainable development, it is essential to discover, develop and defend this natural prosperity. The Industrial development of any country is critically dependent on the intellectual and financial investment in this area. The need of the hour is to harness the beneficial uses of microbes for maximum utilisation of natural resources and technological yields. Owing to the multitude of applications in a variety of industrial sectors, there has always been an increasing demand for novel producers and resources of alkaline proteases as well as for innovative methods of production at a commercial altitude. This investigation forms a humble endeavour towards this perspective and bequeaths hope and inspiration for inventions to follow.
Resumo:
The present study aimed at the utlisation of microbial organisms for the
production of good quality chitin and chitosan. The three strains used for the
study were Lactobacillus plantarum, Lactobacililus brevis and Bacillus subtilis.
These strains were selected on the basis of their acid producing ability to reduce
the pH of the fermenting substrates to prevent spoilage and thus caused
demineralisation of the shell. Besides, the proteolytic enzymes in these strains
acted on proteinaceous covering of shrimp and thus caused deprotenisation of
shrimp shell waste. Thus the two processes involved in chitin production can be
affected to certain extent using bacterial fermentation of shrimp shell.Optimization parameters like fermentation period, quantity of inoculum,
type of sugar, concentration of sugar etc. for fermentation with three different
strains were studied. For these, parameters like pH, Total titrable acidity (TTA),
changes in sugar concentration, changes in microbial count, sensory changes
etc. were studied.Fermentation study with Lactobacillus plantarum was continued with 20%
w/v jaggery broth for 15 days. The inoculum prepared yislded a cell
concentration of approximately 108 CFU/ml. In the present study, lactic acid and
dilute hydrochloric acid were used for initial pH adjustment because; without
adjusting the initial pH, it took more than 5 hours for the lactic acid bacteria to
convert glucose to lactic acid and during this delay spoilage occurred due to
putrefying enzymes active at neutral or higher pH. During the fermentation study,
pH first decreased in correspondence with increase in TTA values. This showed
a clear indication of acid production by the strain. This trend continued till their
proteolytic activity showed an increasing trend. When the available sugar source
started depleting, proteolytic activity also decreased and pH increased. This was
clearly reflected in the sensory evaluation results. Lactic acid treated samples
showed greater extent of demineralization and deprotenisation at the end of
fermentation study than hydrochloric acid treated samples. It can be due to the
effect of strong hydrochloric acid on the initial microbial count, which directly
affects the fermentation process. At the end of fermentation, about 76.5% of ash was removed in lactic acid treated samples and 71.8% in hydrochloric acid
treated samples; 72.8% of proteins in lactic acid treated samples and 70.6% in
hydrochloric acid treated samples.The residual protein and ash in the fermented residue were reduced to
permissible limit by treatment with 0.8N HCI and 1M NaOH. Characteristics of
chitin like chitin content, ash content, protein content, % of N- acetylation etc.
were studied. Quality characteristics like viscosity, degree of deacetylation and
molecular weight of chitosan prepared were also compared. The chitosan
samples prepared from lactic acid treated showed high viscosity than HCI treated
samples. But degree of deacetylation is more in HCI treated samples than lactic
acid treated ones. Characteristics of protein liquor obtained like its biogenic
composition, amino acid composition, total volatile base nitrogen, alpha amino
nitrogen etc. also were studied to find out its suitability as animal feed
supplement.Optimization of fermentation parameters for Lactobacillus brevis
fermentation study was also conducted and parameters were standardized. Then
detailed fermentation study was done in 20%wlv jaggery broth for 17 days. Also
the effect of two different acid treatments (mild HCI and lactic acid) used for initial
pH adjustment on chitin production were also studied. In this study also trend of
changes in pH. changes in sugar concentration ,microbial count changes were
similar to Lactobacillus plantarum studies. At the end of fermentation, residual
protein in the samples were only 32.48% in HCI treated samples and 31.85% in
lactic acid treated samples. The residual ash content was about 33.68% in HCI
treated ones and 32.52% in lactic acid treated ones. The fermented residue was
converted to chitin with good characteristics by treatment with 1.2MNaOH and
1NHCI.Characteristics of chitin samples prepared were studied and extent of Nacetylation
was about 84% in HCI treated chitin and 85%in lactic acid treated
ones assessed from FTIR spectrum. Chitosan was prepared from these samples
by usual chemical method and its extent of solubility, degree of deacetylation,
viscosity and molecular weight etc were studied. The values of viscosity and
molecular weight of the samples prepared were comparatively less than the
chitosan prepared by Lactobacillus plantarum fermentation. Characteristics of protein liquor obtained were analyzed to determine its quality and is suitability as
animal feed supplement.Another strain used for the study was Bacillus subtilis and fermentation
was carried out in 20%w/v jaggery broth for 15 days. It was found that Bacillus
subtilis was more efficient than other Lactobacillus species for deprotenisation
and demineralization. This was mainly due to the difference in the proteolytic
nature of the strains. About 84% of protein and 72% of ash were removed at the
end of fermentation. Considering the statistical significance (P
Resumo:
The overall focus of the thesis involves the synthesis and characterization of CdSe QDs overcoated with shell materials for various biological and chemical sensing applications. Second chapter deals with the synthesis and characterization of CdSe and CdSe/ZnS core shell QDs. The primary attention of this work is to develop a simple method based on photoinduced charge transfer to optimize the shell thickness. Synthesis of water soluble CdSe QDs, their cytotoxicity analysis and investigation of nonlinear optical properties form the subject of third chapter. Final chapter deals with development of QD based sensor systems for the selective detection of biologically and environmentally important analytes from aqueous media.
Resumo:
This research project aims at developing new applications for CNSL in the polymer field. Cashew nut shell liquid (CNSL) is a cheap agro-byproduct and renewable resource which consists mainly of substituted phenols. By using CNSL in place of phenol, phenol derived from petrochemicals can be conserved and a cheap agro-byproduct utilized.In this study CNSL based resin is prepared by condensing a mixture of phenol and CNSL with hexamethylenetetramine and the effect of P: F ratio and CNSL: P ratio on the properties of synthesized resin is studied. The adhesive properties of CNSL based resin in combination with neoprene rubber are investigated. The effect of varying the stoichiometric ratios between total phenol and formaldehyde and CNSL and phenol of the resin, resin content, choice and extent of fillers and adhesion promoters in the adhesive formulation are studied. The effect of resin on the ageing properties of various elastomers is also studied by following changes in tensile strength, elongation at break, modulus, tear strength, swelling index and acetone soluble matter. Crude CNSL and resins with different P: F ratios and CNSL: P ratios are incorporated into elastomers. Lastly, utility of CNSL based resin as binder for making particleboard is investigated.The results show that CNSL based resin is an effective ingredient in adhesives for bonding aluminium to aluminium. The resin used for adhesive fonnulation gives the best performance at 45 to 55 phr resin and a total phenol: formaldehyde of l:2.9. The resin when added at a rate of l5 phr improves ageing characteristics of elastomers with respect to mechanical properties. The reaction mixture of CNSL and hexa and the resin resulting from the condensation of CN SL, phenol and hexa can be used as effective binders for moulding particleboard.
Resumo:
In this thesis all these aspects are taken into consideration. Extensive studies were conducted on all aspects of processing of crabs, mussels and clams. The species taken for studies are commercially used ones namely Scylla sereta, perna viridis, and villorita cyprinoids. In Chapter 4.1 with regard to crab) the following aspects on their handling and processing are reported seasonal variation of chemical constituents, changes taking place during ice storage, freezing, canning etc. In Chapter 4._2 with regard to mussel, the relation between age (size) and chemical constituents, changes taking place during ice storage, freezing, canning etc. are reported and in Chapter 4.3 the changes taking place in clam muscle during icing and freezing are reported and the ame rebility of ice stored clams for canning purpose is reported.The interference of high concentration of glycogen in mussel and clam muscles during the colour development of ribose (Me-jbaum's method) is observed and remedial step are taken to minimise the interference.
Resumo:
We report the results of Monte Carlo simulations with the aim to clarify the microscopic origin of exchange bias in the magnetization hysteresis loops of a model of individual core/shell nanoparticles. Increase of the exchange coupling across the core/shell interface leads to an enhancement of exchange bias and to an increasing asymmetry between the two branches of the loops which is due to different reversal mechanisms. A detailed study of the magnetic order of the interfacial spins shows compelling evidence that the existence of a net magnetization due to uncompensated spins at the shell interface is responsible for both phenomena and allows to quantify the loop shifts directly in terms of microscopic parameters with striking agreement with the macroscopic observed values.
Resumo:
This thesis is an attempt to make a comparative study of the composition of the muscle proteins of some commercially important species of fishes and shell fishes of our coast and their changes during preservation and processing. As a part of this the distribution of the major protein nitrogen fractions in several species of fishes and shell fishes was studied in detail.
Resumo:
Prawn shell waste collected from shrimp-processing plants in Cochin, India, was subjected to fermentation using 20 chitinoclastic and proteolytic/non-proteolytic bacterial strains. The products generated were analysed for protein, lipid, total sugars, N-acetyl glucosamine, free amino acids and ash. Shrimp diets were prepared using these 20 fermented products and a control diet using raw prawn shell waste. Feeding experiment was conducted with postlarvae (PL21) of Indian white prawn, Fenneropenaeus indicus for a period of 21 days. Biogrowth parameters such as mean weight gain, feed conversion ratio, specific growth rate and protein efficiency ratio were estimated and the animals were challenged with white spot virus orally via diet. Enhanced growth could be observed in prawns fed F134 and F124, incorporated with the fermentation products generated using Bacillus spp., C134 and C124 respectively. The percentage survival of prawns after 7 days of challenge was found to be highest for groups fed diet F111 incorporated with fermentation product generated using Bacillus sp. These products of bacterial fermentation hold promise as growth enhancers and immunostimulants in aquaculture. KEY WORDS: biogrowth parameters, feed
Resumo:
Commercial samples of Magnetite with size ranging from 25–30nm were coated with polyaniline by using radio frequency plasma polymerization to achieve a core shell structure of magnetic nanoparticle (core)–Polyaniline (shell). High resolution transmission electron microscopy images confirm the core shell architecture of polyaniline coated iron oxide. The dielectric properties of the material were studied before and after plasma treatment. The polymer coated magnetite particles exhibited a large dielectric permittivity with respect to uncoated samples. The dielectric behavior was modeled using a Maxwell–Wagner capacitor model. A plausible mechanism for the enhancement of dielectric permittivity is proposed
Resumo:
Marine yeasts (33 strains) were isolated from the coastal and offshore waters off Cochin. The isolates were identified and then characterized for the utilization of starch, gelatin, lipid, cellulose, urea, pectin, lignin, chitin and prawn-shell waste. Most of the isolates were Candida species. Based on the biochemical characterization, four potential strains were selected and their optimum pH and NaCI concentration for growth were determined. These strains were then inoculated into prawn-shell waste and SCP (single cell protein) generation was noted in terms of the increase in protein content of the final product.