996 resultados para sharing features
Resumo:
Many newspapers and magazines have added “social media features” to their web-based information services in order to allow users to participate in the production of content. This study examines the specific impact of the firm’s investment in social media features on their online business models. We make a comparative case study of four Scandinavian print media firms that have added social media features to their online services. We show how social media features lead to online business model innovation, particularly linked to the firms’ value propositions. The paper discusses the repercussions of this transformation on firms’ relationship with consumers and with traditional content contributors. The modified value proposition also requires firms to acquire new competences in order to reap full benefit of their social media investments. We show that the firms have been unable to do so since they have not allowed the social media features to affect their online revenue models.
Resumo:
This column features a conversation (via email, image sharing, and Facetime) that took place over several months between two international theorists of digital filmmaking from schools in two countries—Professors Jason Ranker (Portland State University, Oregon, United States) and Kathy Mills (Queensland University of Technology, Australia). The authors discuss emerging ways of thinking about video making, sharing tips and anecdotes from classroom experience to inspire teachers to explore with adolescents the meaning potentials of digital video creation. The authors briefly discuss their previous work in this area, and then move into a discussion of how the material spaces in which students create videos profoundly shape the films' meanings and significance. The article ends with a discussion of how students can take up creative new directions, pushing the boundaries of the potentials of classroom video making and uncovering profound uses of the medium.
Resumo:
A microgrid may contain a large number of distributed generators (DGs). These DGs can be either inertial or non-inertial, either dispatchable or non-dispatchable. Moreover, the DGs may operate in plug and play fashion. The combination of these various types of operation makes the microgrid control a challenging task, especially when the microgrid operates in an autonomous mode. In this paper, a new control algorithm for converter interfaced (dispatchable) DG is proposed which facilitates smooth operation in a hybrid microgrid containing inertial and non-inertial DGs. The control algorithm works satisfactorily even when some of the DGs operate in plug and play mode. The proposed strategy is validated through PSCAD simulation studies.
Resumo:
Introduction In a connected world youth are participating in digital content creating communities. This paper introduces a description of teens' information practices in digital content creating and sharing communities. Method The research design was a constructivist grounded theory methodology. Seventeen interviews with eleven teens were collected and observation of their digital communities occurred over a two-year period. Analysis The data were analysed iteratively to describe teens' interactions with information through open and then focused coding. Emergent categories were shared with participants to confirm conceptual categories. Focused coding provided connections between conceptual categories resulting in the theory, which was also shared with participants for feedback. Results The paper posits a substantive theory of teens' information practices as they create and share content. It highlights that teens engage in the information actions of accessing, evaluating, and using information. They experienced information in five ways: participation, information, collaboration, process, and artefact. The intersection of enacting information actions and experiences of information resulted in five information practices: learning community, negotiating aesthetic, negotiating control, negotiating capacity, and representing knowledge. Conclusion This study contributes to our understanding of youth information actions, experiences, and practices. Further research into these communities might indicate what information practices are foundational to digital communities.
Resumo:
This paper demonstrates power management and control of DERs in an autonomous MG. The paper focuses on the control and performance of converter-interfaced DERs in voltage controlled mode. Several case studies are considered for a MG based on the different types of loads supplied by the MG (i.e. balanced three-phase, unbalanced, single-phase and harmonic loads). DERs are controlled by adjusting the voltage magnitude and angle in their converter output through droop control, in a decentralized concept. Based on this control method, DERs can successfully share the total demand of the MG in the presence of any type of loads. This includes proper total power sharing, unbalanced power sharing as well as harmonic power sharing, depending on the load types. The efficacy of the proposed power control, sharing and management among DERs in a microgrid is validated through extensive simulation studies using PSCAD/EMTDC.
Resumo:
Term-based approaches can extract many features in text documents, but most include noise. Many popular text-mining strategies have been adapted to reduce noisy information from extracted features; however, text-mining techniques suffer from low frequency. The key issue is how to discover relevance features in text documents to fulfil user information needs. To address this issue, we propose a new method to extract specific features from user relevance feedback. The proposed approach includes two stages. The first stage extracts topics (or patterns) from text documents to focus on interesting topics. In the second stage, topics are deployed to lower level terms to address the low-frequency problem and find specific terms. The specific terms are determined based on their appearances in relevance feedback and their distribution in topics or high-level patterns. We test our proposed method with extensive experiments in the Reuters Corpus Volume 1 dataset and TREC topics. Results show that our proposed approach significantly outperforms the state-of-the-art models.
Resumo:
Tacit knowledge sharing amongst physicians is known to have a significant impact on the quality of medical decisions. This thesis posits that social media can provide new opportunities for tacit knowledge sharing amongst physicians, and demonstrates this by presenting findings from a review of relevant literature and a qualitative survey conducted with physicians. Using thematic analysis, the study revealed five major themes and over twenty sub-themes as potential contributions of social media to tacit knowledge flow amongst physicians.
Resumo:
We propose to use a simple and effective way to achieve secure quantum direct secret sharing. The proposed scheme uses the properties of fountain codes to allow a realization of the physical conditions necessary for the implementation of no-cloning principle for eavesdropping-check and authentication. In our scheme, to achieve a variety of security purposes, nonorthogonal state particles are inserted in the transmitted sequence carrying the secret shares to disorder it. However, the positions of the inserted nonorthogonal state particles are not announced directly, but are obtained by sending degrees and positions of a sequence that are pre-shared between Alice and each Bob. Moreover, they can confirm that whether there exists an eavesdropper without exchanging classical messages. Most importantly, without knowing the positions of the inserted nonorthogonal state particles and the sequence constituted by the first particles from every EPR pair, the proposed scheme is shown to be secure.
Resumo:
We present an approach to automatically de-identify health records. In our approach, personal health information is identified using a Conditional Random Fields machine learning classifier, a large set of linguistic and lexical features, and pattern matching techniques. Identified personal information is then removed from the reports. The de-identification of personal health information is fundamental for the sharing and secondary use of electronic health records, for example for data mining and disease monitoring. The effectiveness of our approach is first evaluated on the 2007 i2b2 Shared Task dataset, a widely adopted dataset for evaluating de-identification techniques. Subsequently, we investigate the robustness of the approach to limited training data; we study its effectiveness on different type and quality of data by evaluating the approach on scanned pathology reports from an Australian institution. This data contains optical character recognition errors, as well as linguistic conventions that differ from those contained in the i2b2 dataset, for example different date formats. The findings suggest that our approach compares to the best approach from the 2007 i2b2 Shared Task; in addition, the approach is found to be robust to variations of training size, data type and quality in presence of sufficient training data.
Resumo:
Classical results in unconditionally secure multi-party computation (MPC) protocols with a passive adversary indicate that every n-variate function can be computed by n participants, such that no set of size t < n/2 participants learns any additional information other than what they could derive from their private inputs and the output of the protocol. We study unconditionally secure MPC protocols in the presence of a passive adversary in the trusted setup (‘semi-ideal’) model, in which the participants are supplied with some auxiliary information (which is random and independent from the participant inputs) ahead of the protocol execution (such information can be purchased as a “commodity” well before a run of the protocol). We present a new MPC protocol in the trusted setup model, which allows the adversary to corrupt an arbitrary number t < n of participants. Our protocol makes use of a novel subprotocol for converting an additive secret sharing over a field to a multiplicative secret sharing, and can be used to securely evaluate any n-variate polynomial G over a field F, with inputs restricted to non-zero elements of F. The communication complexity of our protocol is O(ℓ · n 2) field elements, where ℓ is the number of non-linear monomials in G. Previous protocols in the trusted setup model require communication proportional to the number of multiplications in an arithmetic circuit for G; thus, our protocol may offer savings over previous protocols for functions with a small number of monomials but a large number of multiplications.
Resumo:
The purpose of this paper is to describe a new decomposition construction for perfect secret sharing schemes with graph access structures. The previous decomposition construction proposed by Stinson is a recursive method that uses small secret sharing schemes as building blocks in the construction of larger schemes. When the Stinson method is applied to the graph access structures, the number of such “small” schemes is typically exponential in the number of the participants, resulting in an exponential algorithm. Our method has the same flavor as the Stinson decomposition construction; however, the linear programming problem involved in the construction is formulated in such a way that the number of “small” schemes is polynomial in the size of the participants, which in turn gives rise to a polynomial time construction. We also show that if we apply the Stinson construction to the “small” schemes arising from our new construction, both have the same information rate.
Resumo:
Cooperation between multiple environmental decision-makers and activities is necessary to address the impacts of diffuse sources of agricultural pollution on the water quality entering Australia’s Great Barrier Reef (GBR). Water planning efforts requires available knowledge to inform this co-operative water program implementation and reform. This paper uses knowledge sharing, translation and feedback features of collaboration as a way to assess knowledge work practices during key phases of the water planning process. This enabled a systematic review of knowledge work practices in partnership with collaborative water planning groups established to inform water quality program investment decisions in the GBR’s Wet Tropics region. This research builds on the growing academic and policy interest in the conditions required to enable different types of knowledge to be successfully used for policy-making by focusing on when, how and why knowledge work to meet these conditions is required.
Resumo:
We consider the problem of increasing the threshold parameter of a secret-sharing scheme after the setup (share distribution) phase, without further communication between the dealer and the shareholders. Previous solutions to this problem require one to start off with a nonstandard scheme designed specifically for this purpose, or to have communication between shareholders. In contrast, we show how to increase the threshold parameter of the standard Shamir secret-sharing scheme without communication between the shareholders. Our technique can thus be applied to existing Shamir schemes even if they were set up without consideration to future threshold increases. Our method is a new positive cryptographic application for lattice reduction algorithms, inspired by recent work on lattice-based list decoding of Reed-Solomon codes with noise bounded in the Lee norm. We use fundamental results from the theory of lattices (geometry of numbers) to prove quantitative statements about the information-theoretic security of our construction. These lattice-based security proof techniques may be of independent interest.
Resumo:
User evaluations using paper prototypes commonly lack social context. The Group simulation technique described in this paper offers a solution to this problem. The study introduces an early-phase participatory design technique targeted for small groups. The proposed technique is used for evaluating an interface, which enables group work in photo collection creation. Three groups of four users, 12 in total, took part in a simulation session where they tested a low-fidelity design concept that included their own personal photo content from an event that their group attended together. The users’ own content was used to evoke natural experiences. Our results indicate that the technique helped users to naturally engage with the prototype in the session. The technique is suggested to be suitable for evaluating other early-phase concepts and to guide design solutions, especially with the concepts that include users’ personal content and enable content sharing.