989 resultados para sequential frequent pattern


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebellar dysfunction has been proposed to lead to “cognitive dysmetria” in schizophrenia via the cortico-cerebellar-thalamic-cortical circuit, contributing to a range of cognitive and clinical symptoms of the disorder. Here we investigated total cerebellar grey and white matter volumes and cerebellar regional grey matter abnormalities in 13 remitted first-episode schizophrenia patients with less than 2 years’ duration of illness. Patient data were compared to 13 pair-wise age, gender, and handedness-matched healthy volunteers using cortical pattern averaging on high-resolution magnetic resonance images. Total cerebellar volume and total grey matter volumes in first-episode schizophrenia patients did not differ from healthy control subjects, but total cerebellar white matter was increased and total grey to white matter ratios were reduced in patients. Four clusters of cerebellar grey matter reduction were identified: (i) in superior vermis; (ii) in the left lobuli VI; (iii) in right-inferior lobule IX, extending into left lobule IX; and (iv) bilaterally in the areas of lobuli III, peduncle and left flocculus. Grey matter deficits were particularly prominent in right lobuli III and IX, left flocculus and bilateral pedunculi. These cerebellar areas have been implicated in attention control, emotional regulation, social functioning, initiation of smooth pursuit eye movements, eye-blink conditioning, language processing, verbal memory, executive function and the processing of spatial and emotional information. Consistent with common clinical, cognitive, and pathophysiological signs of established illness, our findings demonstrate cerebellar pathology as early as in first-episode schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the overwhelming increase in the amount of data on the web and data bases, many text mining techniques have been proposed for mining useful patterns in text documents. Extracting closed sequential patterns using the Pattern Taxonomy Model (PTM) is one of the pruning methods to remove noisy, inconsistent, and redundant patterns. However, PTM model treats each extracted pattern as whole without considering included terms, which could affect the quality of extracted patterns. This paper propose an innovative and effective method that extends the random set to accurately weigh patterns based on their distribution in the documents and their terms distribution in patterns. Then, the proposed approach will find the specific closed sequential patterns (SCSP) based on the new calculated weight. The experimental results on Reuters Corpus Volume 1 (RCV1) data collection and TREC topics show that the proposed method significantly outperforms other state-of-the-art methods in different popular measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extant models of decision making in social neurobiological systems have typically explained task dynamics as characterized by transitions between two attractors. In this paper, we model a three-attractor task exemplified in a team sport context. The model showed that an attacker–defender dyadic system can be described by the angle x between a vector connecting the participants and the try line. This variable was proposed as an order parameter of the system and could be dynamically expressed by integrating a potential function. Empirical evidence has revealed that this kind of system has three stable attractors, with a potential function of the form V(x)=−k1x+k2ax2/2−bx4/4+x6/6, where k1 and k2 are two control parameters. Random fluctuations were also observed in system behavior, modeled as white noise εt, leading to the motion equation dx/dt = −dV/dx+Q0.5εt, where Q is the noise variance. The model successfully mirrored the behavioral dynamics of agents in a social neurobiological system, exemplified by interactions of players in a team sport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to its three-dimensional folding pattern, the human neocortex; poses a challenge for accurate co-registration of grouped functional; brain imaging data. The present study addressed this problem by; employing three-dimensional continuum-mechanical image-warping; techniques to derive average anatomical representations for coregistration; of functional magnetic resonance brain imaging data; obtained from 10 male first-episode schizophrenia patients and 10 age-matched; male healthy volunteers while they performed a version of the; Tower of London task. This novel technique produced an equivalent; representation of blood oxygenation level dependent (BOLD) response; across hemispheres, cortical regions, and groups, respectively, when; compared to intensity average co-registration, using a deformable; Brodmann area atlas as anatomical reference. Somewhat closer; association of Brodmann area boundaries with primary visual and; auditory areas was evident using the gyral pattern average model.; Statistically-thresholded BOLD cluster data confirmed predominantly; bilateral prefrontal and parietal, right frontal and dorsolateral; prefrontal, and left occipital activation in healthy subjects, while; patients’ hemispheric dominance pattern was diminished or reversed,; particularly decreasing cortical BOLD response with increasing task; difficulty in the right superior temporal gyrus. Reduced regional gray; matter thickness correlated with reduced left-hemispheric prefrontal/; frontal and bilateral parietal BOLD activation in patients. This is the; first study demonstrating that reduction of regional gray matter in; first-episode schizophrenia patients is associated with impaired brain; function when performing the Tower of London task, and supports; previous findings of impaired executive attention and working memory; in schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was designed to identify the neural networks underlying automatic auditory deviance detection in 10 healthy subjects using functional magnetic resonance imaging. We measured blood oxygenation level-dependent contrasts derived from the comparison of blocks of stimuli presented as a series of standard tones (50 ms duration) alone versus blocks that contained rare duration-deviant tones (100 ms) that were interspersed among a series of frequent standard tones while subjects were watching a silent movie. Possible effects of scanner noise were assessed by a “no tone” condition. In line with previous positron emission tomography and EEG source modeling studies, we found temporal lobe and prefrontal cortical activation that was associated with auditory duration mismatch processing. Data were also analyzed employing an event-related hemodynamic response model, which confirmed activation in response to duration-deviant tones bilaterally in the superior temporal gyrus and prefrontally in the right inferior and middle frontal gyri. In line with previous electrophysiological reports, mismatch activation of these brain regions was significantly correlated with age. These findings suggest a close relationship of the event-related hemodynamic response pattern with the corresponding electrophysiological activity underlying the event-related “mismatch negativity” potential, a putative measure of auditory sensory memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Helicobacter pylori (HP) is associated with chronic gastritis and gastric cancer, and more than half of the world’s population is chronically infected. The aim of this retrospective study was to investigate whether an irregular meal pattern is associated with increased risk of gastritis and HP infection. Methods The study involved 323 subjects, divided into three groups: subjects with HP infection and gastritis, with gastritis, and a control group. Subjects were interviewed on eating habits and meal timing. Multivariate logistic regression was used to compare groups. Adjusted odds ratios (OR) were derived controlling for gender, age, stress and probiotic consumption. Results Subjects who deviated from their regular meals by 2 hours or more had a significantly higher incidence of HP infection with gastritis (adjusted OR= 13.3, 95% CI 5.3–33.3, p<0.001) and gastritis (adjusted OR=6.1, 95% CI 2.5–15.0, p<0.001). Subjects who deviated their meals by 2 hours or more, twice or more per week, had an adjusted OR of 6.3 and 3.5 of acquiring HP infection with gastritis (95% CI 2.6–15.2, p<0.001) and gastritis (95% CI 1.5–8.5, p<0.001) respectively. Conclusion Frequent deviation in meal timing over a prolonged period appears associated with increased risk of developing HP infection and gastritis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For traditional information filtering (IF) models, it is often assumed that the documents in one collection are only related to one topic. However, in reality users’ interests can be diverse and the documents in the collection often involve multiple topics. Topic modelling was proposed to generate statistical models to represent multiple topics in a collection of documents, but in a topic model, topics are represented by distributions over words which are limited to distinctively represent the semantics of topics. Patterns are always thought to be more discriminative than single terms and are able to reveal the inner relations between words. This paper proposes a novel information filtering model, Significant matched Pattern-based Topic Model (SPBTM). The SPBTM represents user information needs in terms of multiple topics and each topic is represented by patterns. More importantly, the patterns are organized into groups based on their statistical and taxonomic features, from which the more representative patterns, called Significant Matched Patterns, can be identified and used to estimate the document relevance. Experiments on benchmark data sets demonstrate that the SPBTM significantly outperforms the state-of-the-art models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smart Card Automated Fare Collection (AFC) data has been extensively exploited to understand passenger behavior, passenger segment, trip purpose and improve transit planning through spatial travel pattern analysis. The literature has been evolving from simple to more sophisticated methods such as from aggregated to individual travel pattern analysis, and from stop-to-stop to flexible stop aggregation. However, the issue of high computing complexity has limited these methods in practical applications. This paper proposes a new algorithm named Weighted Stop Density Based Scanning Algorithm with Noise (WS-DBSCAN) based on the classical Density Based Scanning Algorithm with Noise (DBSCAN) algorithm to detect and update the daily changes in travel pattern. WS-DBSCAN converts the classical quadratic computation complexity DBSCAN to a problem of sub-quadratic complexity. The numerical experiment using the real AFC data in South East Queensland, Australia shows that the algorithm costs only 0.45% in computation time compared to the classical DBSCAN, but provides the same clustering results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis targets on a challenging issue that is to enhance users' experience over massive and overloaded web information. The novel pattern-based topic model proposed in this thesis can generate high-quality multi-topic user interest models technically by incorporating statistical topic modelling and pattern mining. We have successfully applied the pattern-based topic model to both fields of information filtering and information retrieval. The success of the proposed model in finding the most relevant information to users mainly comes from its precisely semantic representations to represent documents and also accurate classification of the topics at both document level and collection level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new transdimensional Sequential Monte Carlo (SMC) algorithm called SM- CVB is proposed. In an SMC approach, a weighted sample of particles is generated from a sequence of probability distributions which ‘converge’ to the target distribution of interest, in this case a Bayesian posterior distri- bution. The approach is based on the use of variational Bayes to propose new particles at each iteration of the SMCVB algorithm in order to target the posterior more efficiently. The variational-Bayes-generated proposals are not limited to a fixed dimension. This means that the weighted particle sets that arise can have varying dimensions thereby allowing us the option to also estimate an appropriate dimension for the model. This novel algorithm is outlined within the context of finite mixture model estimation. This pro- vides a less computationally demanding alternative to using reversible jump Markov chain Monte Carlo kernels within an SMC approach. We illustrate these ideas in a simulated data analysis and in applications.