916 resultados para sensor-Cloud system
Resumo:
Thesis submitted in the fulfilment of the requirements for the Degree of Master in Electronic and Telecomunications Engineering
Resumo:
A presente dissertação apresenta uma solução para o problema de modelização tridimensional de galerias subterrâneas. O trabalho desenvolvido emprega técnicas provenientes da área da robótica móvel para obtenção um sistema autónomo móvel de modelização, capaz de operar em ambientes não estruturados sem acesso a sistemas de posicionamento global, designadamente GPS. Um sistema de modelização móvel e autónomo pode ser bastante vantajoso, pois constitui um método rápido e simples de monitorização das estruturas e criação de representações virtuais das galerias com um elevado nível de detalhe. O sistema de modelização desloca-se no interior dos túneis para recolher informações sensoriais sobre a geometria da estrutura. A tarefa de organização destes dados com vista _a construção de um modelo coerente, exige um conhecimento exacto do percurso praticado pelo sistema, logo o problema de localização da plataforma sensorial tem que ser resolvido. A formulação de um sistema de localização autónoma tem que superar obstáculos que se manifestam vincadamente nos ambientes underground, tais como a monotonia estrutural e a já referida ausência de sistemas de posicionamento global. Neste contexto, foi abordado o conceito de SLAM (Simultaneous Loacalization and Mapping) para determinação da localização da plataforma sensorial em seis graus de liberdade. Seguindo a abordagem tradicional, o núcleo do algoritmo de SLAM consiste no filtro de Kalman estendido (EKF { Extended Kalman Filter ). O sistema proposto incorpora métodos avançados do estado da arte, designadamente a parametrização em profundidade inversa (Inverse Depth Parametrization) e o método de rejeição de outliers 1-Point RANSAC. A contribuição mais importante do método por nós proposto para o avanço do estado da arte foi a fusão da informação visual com a informação inercial. O algoritmo de localização foi testado com base em dados reais, adquiridos no interior de um túnel rodoviário. Os resultados obtidos permitem concluir que, ao fundir medidas inerciais com informações visuais, conseguimos evitar o fenómeno de degeneração do factor de escala, comum nas aplicações de localização através de sistemas puramente monoculares. Provámos simultaneamente que a correcção de um sistema de localização inercial através da consideração de informações visuais é eficaz, pois permite suprimir os desvios de trajectória que caracterizam os sistemas de dead reckoning. O algoritmo de modelização, com base na localização estimada, organiza no espaço tridimensional os dados geométricos adquiridos, resultando deste processo um modelo em nuvem de pontos, que posteriormente _e convertido numa malha triangular, atingindo-se assim uma representação mais realista do cenário original.
Resumo:
O desenvolvimento de sistemas de localização pedestre com recurso a técnicas de dead reckoning tem mostrado ser uma área em expansão no mundo académico e não só. Existem algumas soluções criadas, no entanto, nem todas as soluções serão facilmente implementadas no mercado, quer seja pelo hardware caro, ou pelo sistema em si, que é desenvolvido tendo em conta um cenário em particular. INPERLYS é um sistema que visa apresentar uma solução de localização pedestre, independentemente do cenário, utilizando recursos que poderão ser facilmente usados. Trata-se de um sistema que utiliza uma técnica de dead reckonig para dar a localização do utilizador. Em cenários outdoor, um receptor GPS fornece a posição do utilizador, fornecendo uma posição absoluta ao sistema. Quando não é possível utilizar o GPS, recorre-se a um sensor MEMS e a uma bússola para se obter posições relativas à última posição válida do GPS. Para interligar todos os sensores foi utilizado o protocolo de comunicações sem fios ZigBee™. A escolha recaiu neste protocolo devido a factores como os seus baixos consumos e o seu baixo custo. Assim o sistema torna-se de uso fácil e confortável para o utilizador, ao contrário de sistemas similares desenvolvidos, que utilizam cabos para interligarem os diferentes componentes do sistema. O sensor MEMS do tipo acelerómetro tem a função de ler a aceleração horizontal, ao nível do pé. Esta aceleração será usada por um algoritmo de reconhecimento do padrão das acelerações para se detectar os passos dados. Após a detecção do passo, a aceleração máxima registada nesse passo é fornecida ao coordenador, para se obter o deslocamento efectuado. Foram efectuados alguns testes para se perceber a eficiência do INPERLYS. Os testes decorreram num percurso plano, efectuados a uma velocidade normal e com passadas normais. Verificou-se que, neste momento, o desempenho do sistema poderá ser melhorado, quer seja a nível de gestão das comunicações, quer a nível do reconhecimento do padrão da aceleração horizontal, essencial para se detectar os passos. No entanto o sistema é capaz de fornecer a posição através do GPS, quando é possível a sua utilização, e é capaz de fornecer a orientação do movimento.
Resumo:
A new fluorescent sensor for nitric oxide (NO) is presented that is based on its reaction with a non fluorescent substance, reduced fluoresceinamine, producing the highly fluorescent fluoresceinamine. Using a portable homemade stabilized light source consisting of 450 nm LED and fiber optics to guide the light, the sensor responds linearly within seconds in the NO concentration range between about 10–750 µM with a limit of detection (LOD) of about 1 µM. The system generated precise intensity readings, with a relative standard deviation of less than 1%. The suitability of the sensor was assessed by monitoring the NO generated by either the nitrous acid decomposition reaction or from a NO-releasing compound. Using relatively high incubation times, the sensor also responds quantitatively to hydrogen peroxide and potassium superoxide, however, using transient signal measurements results in no interfering species.
Resumo:
In this paper, a biosensor based on a glassy carbon electrode (GCE) was used for the evaluation of the total antioxidant capacity (TAC) of flavours and flavoured waters. This biosensor was constructed by immobilising purine bases, guanine and adenine, on a GCE. Square wave voltammetry (SWV) was selected for the development of this methodology. Damage caused by the reactive oxygen species (ROS), superoxide radical (O2·−), generated by the xanthine/xanthine oxidase (XOD) system on the DNA-biosensor was evaluated. DNA-biosensor encountered with oxidative lesion when it was in contact with the O2·−. There was less oxidative damage when reactive antioxidants were added. The antioxidants used in this work were ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol. These antioxidants are capable of scavenging the superoxide radical and therefore protect the purine bases immobilized on the GCE surface. The results demonstrated that the DNA-based biosensor is suitable for the rapid assess of TAC in beverages.
Resumo:
In this study, a method for the electrochemical quantification of the total antioxidant capacity (TAC) in beverages was developed. The method is based on the oxidative damage to the purine bases, adenine or guanine, that are immobilized on a glassy carbon electrode (GCE) surface. The oxidative lesions on the DNA bases were promoted by the sulfate radical generated by the persulfate/iron(II) system. The presence of antioxidants on the reactive system promoted the protection of the DNA bases immobilized on the GCE by scavenging the sulfate radical. Square-wave voltammetry (SWV) was the electrochemical technique used to perform this study. The efficiencies of five antioxidants (ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol) in scavenging the sulfate radical and, therefore, their ability to protect the purine bases immobilized on the GCE were investigated. These results demonstrated that the purine-based biosensor is suitable for the rapid assessment of the TAC in flavors and flavored water.
Resumo:
An optical fiber sensor for Hg(II) in aqueous solution based on sol–gel immobilized carbon dots nanoparticles functionalized with PEG200 and N-acetyl-l-cysteine is described. This sol–gel method generated a thin (about 750 nm), homogenous and smooth (roughness of 2.7±0.7 a˚ ) filmthat immobilizes the carbon dots and allows reversible sensing of Hg(II) in aqueous solution. A fast (less than 10 s), reversible and stable (the fluorescence intensity measurements oscillate less than 1% after several calibration cycles) sensor system was obtained. The sensor allow the detection of submicron molar concentrations of Hg(II) in aqueous solution. The fluorescence intensity of the immobilized carbon dots is quenched by the presence of Hg(II) with a Stern-Volmer constant (pH = 6.8) of 5.3×105M−1.
Resumo:
Ascorbic acid is found in many food samples. Its clinical and technological importance demands an easyto- use, rapid, robust and inexpensive method of analysis. For this purpose, this work proposes a new flow procedure based on the oxidation of ascorbic acid by periodate. A new potentiometric periodate sensor was constructed to monitor this reaction. The selective membranes were of PVC with porphyrin-based sensing systems and a lipophilic cation as additive. The sensor displayed a near-Nernstian response for periodate over 1.0x10-2–6.0x10-6 M, with an anionic slope of 73.9 ± 0.9 mV decade-1. It was pH independent in acidic media and presented good selectivity features towards several inorganic anions. The flow set-up operated in double-channel, carrying a 5.0x10-4 M IO- 4 solution and a suitable buffer; these were mixed in a 50-cm reaction coil. The overall flow rate was 7 ml min-1 and the injection volume 70 µl. Under these conditions, a linear behaviour against concentration was observed for 17.7–194.0 µg ml-1, presenting slopes of 0.169 mV (mg/l)-1, a reproducibility of ±1.1 mV (n = 5), and a sampling rate of ~96 samples h-1. The proposed method was applied to the analysis of beverages and pharmaceuticals.
Resumo:
Sensor/actuator networks promised to extend automated monitoring and control into industrial processes. Avionic system is one of the prominent technologies that can highly gain from dense sensor/actuator deployments. An aircraft with smart sensing skin would fulfill the vision of affordability and environmental friendliness properties by reducing the fuel consumption. Achieving these properties is possible by providing an approximate representation of the air flow across the body of the aircraft and suppressing the detected aerodynamic drags. To the best of our knowledge, getting an accurate representation of the physical entity is one of the most significant challenges that still exists with dense sensor/actuator network. This paper offers an efficient way to acquire sensor readings from very large sensor/actuator network that are located in a small area (dense network). It presents LIA algorithm, a Linear Interpolation Algorithm that provides two important contributions. First, it demonstrates the effectiveness of employing a transformation matrix to mimic the environmental behavior. Second, it renders a smart solution for updating the previously defined matrix through a procedure called learning phase. Simulation results reveal that the average relative error in LIA algorithm can be reduced by as much as 60% by exploiting transformation matrix.
Resumo:
This paper addresses sensor network applications which need to obtain an accurate image of physical phenomena and do so with a high sampling rate in both time and space. We present a fast and scalable approach for obtaining an approximate representation of all sensor readings at high sampling rate for quickly reacting to critical events in a physical environment. This approach is an improvement on previous work in that after the new approach has undergone a startup phase then the new approach can use a very small sampling period.
Resumo:
Managing the physical and compute infrastructure of a large data center is an embodiment of a Cyber-Physical System (CPS). The physical parameters of the data center (such as power, temperature, pressure, humidity) are tightly coupled with computations, even more so in upcoming data centers, where the location of workloads can vary substantially due, for example, to workloads being moved in a cloud infrastructure hosted in the data center. In this paper, we describe a data collection and distribution architecture that enables gathering physical parameters of a large data center at a very high temporal and spatial resolutionof the sensor measurements. We think this is an important characteristic to enable more accurate heat-flow models of the data center andwith them, _and opportunities to optimize energy consumption. Havinga high resolution picture of the data center conditions, also enables minimizing local hotspots, perform more accurate predictive maintenance (pending failures in cooling and other infrastructure equipment can be more promptly detected) and more accurate billing. We detail this architecture and define the structure of the underlying messaging system that is used to collect and distribute the data. Finally, we show the results of a preliminary study of a typical data center radio environment.
Resumo:
Radio link quality estimation in Wireless Sensor Networks (WSNs) has a fundamental impact on the network performance and also affects the design of higher-layer protocols. Therefore, for about a decade, it has been attracting a vast array of research works. Reported works on link quality estimation are typically based on different assumptions, consider different scenarios, and provide radically different (and sometimes contradictory) results. This article provides a comprehensive survey on related literature, covering the characteristics of low-power links, the fundamental concepts of link quality estimation in WSNs, a taxonomy of existing link quality estimators, and their performance analysis. To the best of our knowledge, this is the first survey tackling in detail link quality estimation in WSNs. We believe our efforts will serve as a reference to orient researchers and system designers in this area.
Resumo:
Wireless Sensor Networks (WSN) are being used for a number of applications involving infrastructure monitoring, building energy monitoring and industrial sensing. The difficulty of programming individual sensor nodes and the associated overhead have encouraged researchers to design macro-programming systems which can help program the network as a whole or as a combination of subnets. Most of the current macro-programming schemes do not support multiple users seamlessly deploying diverse applications on the same shared sensor network. As WSNs are becoming more common, it is important to provide such support, since it enables higher-level optimizations such as code reuse, energy savings, and traffic reduction. In this paper, we propose a macro-programming framework called Nano-CF, which, in addition to supporting in-network programming, allows multiple applications written by different programmers to be executed simultaneously on a sensor networking infrastructure. This framework enables the use of a common sensing infrastructure for a number of applications without the users having to worrying about the applications already deployed on the network. The framework also supports timing constraints and resource reservations using the Nano-RK operating system. Nano- CF is efficient at improving WSN performance by (a) combining multiple user programs, (b) aggregating packets for data delivery, and (c) satisfying timing and energy specifications using Rate- Harmonized Scheduling. Using representative applications, we demonstrate that Nano-CF achieves 90% reduction in Source Lines-of-Code (SLoC) and 50% energy savings from aggregated data delivery.
Resumo:
Knowing exactly where a mobile entity is and monitoring its trajectory in real-time has recently attracted a lot of interests from both academia and industrial communities, due to the large number of applications it enables, nevertheless, it is nowadays one of the most challenging problems from scientific and technological standpoints. In this work we propose a tracking system based on the fusion of position estimations provided by different sources, that are combined together to get a final estimation that aims at providing improved accuracy with respect to those generated by each system individually. In particular, exploiting the availability of a Wireless Sensor Network as an infrastructure, a mobile entity equipped with an inertial system first gets the position estimation using both a Kalman Filter and a fully distributed positioning algorithm (the Enhanced Steepest Descent, we recently proposed), then combines the results using the Simple Convex Combination algorithm. Simulation results clearly show good performance in terms of the final accuracy achieved. Finally, the proposed technique is validated against real data taken from an inertial sensor provided by THALES ITALIA.
Resumo:
In spite of the significant amount of scientific work in Wireless Sensor Networks (WSNs), there is a clear lack of effective, feasible and usable WSN system architectures that address both functional and non-functional requirements in an integrated fashion. This poster abstract outlines the EMMON system architecture for large-scale, dense, real-time embedded monitoring. EMMON relies on a hierarchical network architecture together with integrated middleware and command&control mechanisms. It has been designed to use standard commercially– available technologies, while maintaining as much flexibility as possible to meet specific applications’ requirements. The EMMON WSN architecture has been validated through extensive simulation and experimental evaluation, including through a 300+ node test-bed, the largest WSN test-bed in Europe to date