988 resultados para self-compression
Resumo:
The present research was a preliminary examination of young Australians’ mobile phone behaviour. The study explored the relationship between, and psychological predictors of, frequency of mobile phone use and mobile phone involvement conceptualised as people’s cognitive and behavioural interaction with their mobile phone. Participants were 946 Australian youth aged between 15 and 24 years. A descriptive measurement tool, the Mobile Phone Involvement Questionnaire (MPIQ), was developed. Self-identity and validation from others were explored as predictors of both types of mobile phone behaviour. A distinction was found between frequency of mobile phone use and mobile phone involvement. Only self-identity predicted frequency of use whereas both self-identity and validation from others predicted mobile phone involvement. These findings reveal the importance of distinguishing between frequency of use and people’s psychological relationship with their phone and that factors relating to one’s self-concept and approval from others both impact on young people’s mobile phone involvement.
Resumo:
BACKGROUND: Support and education for parents faced with managing a child with atopic dermatitis is crucial to the success of current treatments. Interventions aiming to improve parent management of this condition are promising. Unfortunately, evaluation is hampered by lack of precise research tools to measure change. OBJECTIVES: To develop a suite of valid and reliable research instruments to appraise parents' self-efficacy for performing atopic dermatitis management tasks; outcome expectations of performing management tasks; and self-reported task performance in a community sample of parents of children with atopic dermatitis. METHODS: The Parents' Eczema Management Scale (PEMS) and the Parents' Outcome Expectations of Eczema Management Scale (POEEMS) were developed from an existing self-efficacy scale, the Parental Self-Efficacy with Eczema Care Index (PASECI). Each scale was presented in a single self-administered questionnaire, to measure self-efficacy, outcome expectations, and self-reported task performance related to managing child atopic dermatitis. Each was tested with a community sample of parents of children with atopic dermatitis, and psychometric evaluation of the scales' reliability and validity was conducted. SETTING AND PARTICIPANTS: A community-based convenience sample of 120 parents of children with atopic dermatitis completed the self-administered questionnaire. Participants were recruited through schools across Australia. RESULTS: Satisfactory internal consistency and test-retest reliability was demonstrated for all three scales. Construct validity was satisfactory, with positive relationships between self-efficacy for managing atopic dermatitis and general perceived self-efficacy; self-efficacy for managing atopic dermatitis and self-reported task performance; and self-efficacy for managing atopic dermatitis and outcome expectations. Factor analyses revealed two-factor structures for PEMS and PASECI alike, with both scales containing factors related to performing routine management tasks, and managing the child's symptoms and behaviour. Factor analysis was also applied to POEEMS resulting in a three-factor structure. Factors relating to independent management of atopic dermatitis by the parent, involving healthcare professionals in management, and involving the child in the management of atopic dermatitis were found. Parents' self-efficacy and outcome expectations had a significant influence on self-reported task performance. CONCLUSIONS: Findings suggest that PEMS and POEEMS are valid and reliable instruments worthy of further psychometric evaluation. Likewise, validity and reliability of PASECI was confirmed.
Resumo:
The main goal of this research is to design an efficient compression al~ gorithm for fingerprint images. The wavelet transform technique is the principal tool used to reduce interpixel redundancies and to obtain a parsimonious representation for these images. A specific fixed decomposition structure is designed to be used by the wavelet packet in order to save on the computation, transmission, and storage costs. This decomposition structure is based on analysis of information packing performance of several decompositions, two-dimensional power spectral density, effect of each frequency band on the reconstructed image, and the human visual sensitivities. This fixed structure is found to provide the "most" suitable representation for fingerprints, according to the chosen criteria. Different compression techniques are used for different subbands, based on their observed statistics. The decision is based on the effect of each subband on the reconstructed image according to the mean square criteria as well as the sensitivities in human vision. To design an efficient quantization algorithm, a precise model for distribution of the wavelet coefficients is developed. The model is based on the generalized Gaussian distribution. A least squares algorithm on a nonlinear function of the distribution model shape parameter is formulated to estimate the model parameters. A noise shaping bit allocation procedure is then used to assign the bit rate among subbands. To obtain high compression ratios, vector quantization is used. In this work, the lattice vector quantization (LVQ) is chosen because of its superior performance over other types of vector quantizers. The structure of a lattice quantizer is determined by its parameters known as truncation level and scaling factor. In lattice-based compression algorithms reported in the literature the lattice structure is commonly predetermined leading to a nonoptimized quantization approach. In this research, a new technique for determining the lattice parameters is proposed. In the lattice structure design, no assumption about the lattice parameters is made and no training and multi-quantizing is required. The design is based on minimizing the quantization distortion by adapting to the statistical characteristics of the source in each subimage. 11 Abstract Abstract Since LVQ is a multidimensional generalization of uniform quantizers, it produces minimum distortion for inputs with uniform distributions. In order to take advantage of the properties of LVQ and its fast implementation, while considering the i.i.d. nonuniform distribution of wavelet coefficients, the piecewise-uniform pyramid LVQ algorithm is proposed. The proposed algorithm quantizes almost all of source vectors without the need to project these on the lattice outermost shell, while it properly maintains a small codebook size. It also resolves the wedge region problem commonly encountered with sharply distributed random sources. These represent some of the drawbacks of the algorithm proposed by Barlaud [26). The proposed algorithm handles all types of lattices, not only the cubic lattices, as opposed to the algorithms developed by Fischer [29) and Jeong [42). Furthermore, no training and multiquantizing (to determine lattice parameters) is required, as opposed to Powell's algorithm [78). For coefficients with high-frequency content, the positive-negative mean algorithm is proposed to improve the resolution of reconstructed images. For coefficients with low-frequency content, a lossless predictive compression scheme is used to preserve the quality of reconstructed images. A method to reduce bit requirements of necessary side information is also introduced. Lossless entropy coding techniques are subsequently used to remove coding redundancy. The algorithms result in high quality reconstructed images with better compression ratios than other available algorithms. To evaluate the proposed algorithms their objective and subjective performance comparisons with other available techniques are presented. The quality of the reconstructed images is important for a reliable identification. Enhancement and feature extraction on the reconstructed images are also investigated in this research. A structural-based feature extraction algorithm is proposed in which the unique properties of fingerprint textures are used to enhance the images and improve the fidelity of their characteristic features. The ridges are extracted from enhanced grey-level foreground areas based on the local ridge dominant directions. The proposed ridge extraction algorithm, properly preserves the natural shape of grey-level ridges as well as precise locations of the features, as opposed to the ridge extraction algorithm in [81). Furthermore, it is fast and operates only on foreground regions, as opposed to the adaptive floating average thresholding process in [68). Spurious features are subsequently eliminated using the proposed post-processing scheme.
Resumo:
This thesis investigates aspects of encoding the speech spectrum at low bit rates, with extensions to the effect of such coding on automatic speaker identification. Vector quantization (VQ) is a technique for jointly quantizing a block of samples at once, in order to reduce the bit rate of a coding system. The major drawback in using VQ is the complexity of the encoder. Recent research has indicated the potential applicability of the VQ method to speech when product code vector quantization (PCVQ) techniques are utilized. The focus of this research is the efficient representation, calculation and utilization of the speech model as stored in the PCVQ codebook. In this thesis, several VQ approaches are evaluated, and the efficacy of two training algorithms is compared experimentally. It is then shown that these productcode vector quantization algorithms may be augmented with lossless compression algorithms, thus yielding an improved overall compression rate. An approach using a statistical model for the vector codebook indices for subsequent lossless compression is introduced. This coupling of lossy compression and lossless compression enables further compression gain. It is demonstrated that this approach is able to reduce the bit rate requirement from the current 24 bits per 20 millisecond frame to below 20, using a standard spectral distortion metric for comparison. Several fast-search VQ methods for use in speech spectrum coding have been evaluated. The usefulness of fast-search algorithms is highly dependent upon the source characteristics and, although previous research has been undertaken for coding of images using VQ codebooks trained with the source samples directly, the product-code structured codebooks for speech spectrum quantization place new constraints on the search methodology. The second major focus of the research is an investigation of the effect of lowrate spectral compression methods on the task of automatic speaker identification. The motivation for this aspect of the research arose from a need to simultaneously preserve the speech quality and intelligibility and to provide for machine-based automatic speaker recognition using the compressed speech. This is important because there are several emerging applications of speaker identification where compressed speech is involved. Examples include mobile communications where the speech has been highly compressed, or where a database of speech material has been assembled and stored in compressed form. Although these two application areas have the same objective - that of maximizing the identification rate - the starting points are quite different. On the one hand, the speech material used for training the identification algorithm may or may not be available in compressed form. On the other hand, the new test material on which identification is to be based may only be available in compressed form. Using the spectral parameters which have been stored in compressed form, two main classes of speaker identification algorithm are examined. Some studies have been conducted in the past on bandwidth-limited speaker identification, but the use of short-term spectral compression deserves separate investigation. Combining the major aspects of the research, some important design guidelines for the construction of an identification model when based on the use of compressed speech are put forward.