999 resultados para seasonal forest


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Determining the impact of insect herbivores on forest tree seedlings and saplings is difficult without experimentation in the field. Moreover, this impact may be heterogeneous in time and space because of seasonal rainfall and canopy disturbances, or ‘gaps’, which can influence both insect abundance and plant performance. In this study we used fine netting to individually protect seedlings of Microberlinia bisulcata, Tetraberlinia bifoliolata and Tetraberlinia korupensis trees (Fabaceae = Leguminosae) from insects in 41 paired gap-understorey locations across 80 ha of primary rain forest (Korup, Cameroon). For all species, growth in height and leaf numbers was negligible in the understorey, where M. bisulcata had the lowest survival after c. 2 years. In gaps, however, all species responded positively with pronounced above-ground growth across seasons. When exposed to herbivores their seedling height growth was similar, but in the absence of herbivores, M. bisulcata significantly outgrew both Tetraberlinia species and matched their leaf numbers. This result suggests that insect herbivores might play an important role in maintaining species coexistence by mitigating sapling abundance of the more palatable M. bisulcata, which in gaps was eaten the most severely. The higher ratio in static leaf damage of control-to-caged M. bisulcata seedlings in gaps than understorey locations was consistent with the Plant Vigour Hypothesis. This result, however, did not apply to either Tetraberlinia species. For M. bisulcata and T. korupensis, but not T. bifoliolata (the most shade-tolerant species), caging improved relative seedling survival in the understory locations compared to gaps, providing restricted support for the Limiting Resource Model. Approximately 2.25 years after treatments were removed, the caged seedlings were taller and had more leaves than controls in all three species, and the effect remained strongest for M. bisulcata. We conclude that in this community the impact of leaf herbivory on seedling growth in gaps is strong for the dominant M. bisulcata, which coupled to a very low shade-tolerance contributes to limiting its regeneration. However, because gaps are common to most forests, insect herbivores may be having impacts upon functionally similar tree species that are also characterized by low sapling recruitment much more widely than currently appreciated. An implication for the restoration and management of M. bisulcata populations in forests outside of Korup is that physical protection from herbivores of new seedlings where the canopy is opened by gaps, or by harvesting, should substantially increase its subcanopy regeneration, and thus, too, its opportunities for adult recruitment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim To evaluate the climate sensitivity of model-based forest productivity estimates using a continental-scale tree-ring network. Location Europe and North Africa (30–70° N, 10° W–40° E). Methods We compiled close to 1000 annually resolved records of radial tree growth for all major European tree species and quantified changes in growth as a function of historical climatic variation. Sites were grouped using a neural network clustering technique to isolate spatiotemporal and species-specific climate response patterns. The resulting empirical climate sensitivities were compared with the sensitivities of net primary production (NPP) estimates derived from the ORCHIDEE-FM and LPJ-wsl dynamic global vegetation models (DGVMs). Results We found coherent biogeographic patterns in climate response that depend upon (1) phylogenetic controls and (2) ambient environmental conditions delineated by latitudinal/elevational location. Temperature controls dominate forest productivity in high-elevation and high-latitude areas whereas moisture sensitive sites are widespread at low elevation in central and southern Europe. DGVM simulations broadly reproduce the empirical patterns, but show less temperature sensitivity in the boreal zone and stronger precipitation sensitivity towards the mid-latitudes. Main conclusions Large-scale forest productivity is driven by monthly to seasonal climate controls, but our results emphasize species-specific growth patterns under comparable environmental conditions. Furthermore, we demonstrate that carry-over effects from the previous growing season can significantly influence tree growth, particularly in areas with harsh climatic conditions – an element not considered in most current-state DGVMs. Model–data discrepancies suggest that the simulated climate sensitivity of NPP will need refinement before carbon-cycle climate feedbacks can be accurately quantified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climatic relationships were established in two 210Pb dated pollen sequences from small mires closely surrounded by forest just below actual forest limits (but about 300 m below potential climatic forest limits) in the northern Swiss Alps (suboceanic in climate; mainly with Picea) and the central Swiss Alps (subcontinental; mainly Pinus cembra and Larix) at annual or near-annual resolution from ad 1901 to 1996. Effects of vegetational succession were removed by splitting the time series into early and late periods and by linear detrending. Both pollen concentrations detrended by the depth-age model and modified percentages (in which counts of dominant pollen types are down-weighted) are correlated by simple linear regression with smoothed climatic parameters with one-and two-year timelags, including average monthly and April/September daylight air temperatures and with seasonal and annual precipitation sums. Results from detrended pollen concentrations suggest that peat accumulation is favoured in the northern-Alpine mire either by early snowmelt or by summer precipitation, but in the central-Alpine mire by increased precipitation and cooler summers, suggesting a position of the northern-Alpine mire near the upper altitudinal limit of peat formation, but of the central-Alpine mire near the lower limit. Results from modified pollen percentages indicate that pollen pro duction by plants growing near their upper altitudinal limit is limited by insufficient warmth in summer, and pollen production by plants growing near their lower altitudinal limit is limited by too-high temperatures. Only weakly significant pollen/climate relationships were found for Pinus cembra and Larix, probably because they experience little climatic stress growing 300 m below the potential climatic forest limit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the strongly seasonal, but annually very wet, parts of the tropics, low-water availability in the short dry season leads to a semi-deciduous forest, one which is also highly susceptible to nutrient loss from leaching in the long wet season. Patterns in litterfall were compared between forest with low (LEM) and high (HEM) abundances of ectomycorrhizal trees in Korup National Park, Cameroon, over 26 months in 1990–92. Leaf litter was sorted into 26 abundant species which included six ectomycorrhizal species, and of these three were the large grove-forming trees Microberlinia bisulcata, Tetraberlinia bifoliolata and Tetraberlinia moreliana. Larger-tree species shed their leaves with pronounced peaks in the dry season, whereas other species had either weaker dependence, showed several peaks per year, or were wet-season shedders. Although total annual litterfall differed little between forest types, in the HEM forest (dominated by M. bisulcata) the dry-season peak was more pronounced and earlier than that in the LEMforest. Species differed greatly in their mean leaf litterfall nutrient concentrations, with an approx. twofold range for nitrogen and phosphorus, and 2.5–3.5-fold for potassium, magnesium and calcium. In the dry season, LEM and HEM litter showed similar declines in P and N concentration, and increases in K and Mg; some species, especially M. bisculcata, showed strong dry-wet season differences. The concentration of P (but not N) was higher in the leaf litter of ectomycorrhizal than nonectomycorrhizal species. Retranslocation of N and P was lower among the ectomycorrhizal than nonectomycorrhizal species by approx. twofold. It is suggested that, within ectomycorrhizal groves on this soil low in P, a fast decomposition rate with minimal loss of mineralized P is possible due to the relatively high litter P not limiting the cycle at this stage, combined with an efficient recapture of released P by the surface organic layer of ectomycorrhizas and fine roots. This points to a feedback between two essential controlling steps (retranslocation and mineralization) in a tropical rain forest ecosystem dominated by ectomycorrhizal trees.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because climate can affect xylem cell anatomy, series of intra-annual cell anatomical features have the potential to retrospectively supply seasonal climatic information. In this study, we explored the ability to extract information about water stress conditions from tracheid features of the Mediterranean conifer Juniperus thurifera L. Tracheidograms of four climatic years from two drought-sensitive sites in Spain were compared to evaluate whether it is possible to link intra-annual cell size patterns to seasonal climatic conditions. Results indicated site-specific anatomical adjustment such as smaller and thicker tracheids at the dryer site but also showed a strong climatic imprint on the intra-annual pattern of tracheid size. Site differences in cell size reflected expected structural adjustments against cavitation failures. Differences between intra-annual patterns, however, indicated a response to seasonal changes in water availability whereby cells formed under drought conditions were smaller and thicker, and vice versa. This relationship was more manifest and stable at the dryer site

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Progressive increase of temperatures as well as longer seasonal drought periods revealed by climate studies correspond to fast environmental changes that forest species face with their actual genetic background. Natural selective processes cannot develop an adaptive response within this time frame. Thus the capability of forest tree species to adapt to the new environments will depend on their genetic background, but also rely on their phenotypic plasticity. Several reports have shown the involvement of epigenetic modifiers as the basis of the phenotypic plasticity, and in particular to the adaptation to abiotic stresses. DNA methylation (methylation of cytosine residues)is one the most important epigenetic modification in eukaryotes. Itis involved in specific biological processes such as gene transcription regulation, gene silencing, mobile element control or genome imprinting.Therefore, there is a great interest in analyzing cytosine methylation levels and distribution within the genome

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ecological intensification of crops is proposed as a solution to the growing demand of agricultural and forest resources, in opposition to intensive monocultures. The introduction of mixed cultures as mixtures between nitrogen fixing species and non nitrogen fixing species intended to increase crop yield as a result of an improvement of the available nitrogen and phosphorus in soil. Relationship between crops have received little attention despite the wide range of advantages that confers species diversity to these systems, such as increased productivity, resilience to disruption and ecological sustainability. Forests and forestry plantations can develop an important role in storing carbon in their tissues, especially in wood which become into durable product. A simplifying parameter to analyze the amount allocated carbon by plantation is the TBCA (total belowground carbon allocation), whereby, for short periods and mature plantations, is admitted as the subtraction between soil carbon efflux and litterfall. Soil respiration depends on a wide range of factors, such as soil temperature and soil water content, soil fertility, presence and type of vegetation, among others. The studied orchard is a mixed forestry plantation of hybrid walnuts(Juglans × intermedia Carr.) for wood and alders (Alnus cordata (Loisel.) Duby.), a nitrogen fixing specie through the actinomycete Frankia alni ((Woronin, 1866) Von Tubeuf 1895). The study area is sited at Restinclières, a green area near Montpellier (South of France). In the present work, soil respiration varied greatly throughout the year, mainly influenced by soil temperature. Soil water content did not significantly influence the response of soil respiration as it was constant during the measurement period and under no water stress conditions. Distance between nearest walnut and measurement was also a highly influential factor in soil respiration. Generally there was a decreasing trend in soil respiration when the distance to the nearest tree increased. It was also analyzed the response of soil respiration according to alder presence and fertilizer management (50 kg N·ha-1·año-1 from 1999 to 2010). None of these treatments significantly influenced soil respiration, although previous studies noticed an inhibition in rates of soil respiration under fertilized conditions and high rates of available nitrogen. However, treatments without fertilization and without alder presence obtained higher respiration rates in those cases with significant differences. The lack of significant differences between treatments may be due to the high coefficient of variation experienced by soil respiration measurements. Finally an asynchronous fluctuation was observed between soil respiration and litterfall during senescence period. This is possibly due to the slowdown in the emission of exudates by roots during senescence period, which are largely related to microbial activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of aboveground soft tissue represents an important share of total net primary production in tropical rain forests. Here we draw from a large number of published and unpublished datasets (n = 81 sites) to assess the determinants of litterfall variation across South American tropical forests. We show that across old-growth tropical rainforests, litterfall averages 8.61±1.91Mgha?1 yr?1 (mean±standard deviation, in dry mass units). Secondary forests have a lower annual litterfall than old-growth tropical forests with a mean of 8.01±3.41Mgha?1 yr?1. Annual litterfall shows no significant variation with total annual rainfall, either globally or within forest types. It does not vary consistently with soil type, except in the poorest soils (white sand soils), where litterfall is significantly lower than in other soil types (5.42±1.91Mgha?1 yr?1). We also study the determinants of litterfall seasonality, and find that it does not depend on annual rainfall or on soil type. However, litterfall seasonality is significantly positively correlated with rainfall seasonality. Finally, we assess how much carbon is stored in reproductive organs relative to photosynthetic organs. Mean leaf fall is 5.74±1.83Mgha?1 yr?1 (71% of total litterfall). Mean allocation into reproductive organs is 0.69±0.40Mgha?1 yr?1 (9% of total litterfall). The investment into reproductive organs divided by leaf litterfall increases with soil fertility, suggesting that on poor soils, the allocation to photosynthetic organs is prioritized over that to reproduction. Finally, we discuss the ecological and biogeochemical implications of these results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Debido a la complejidad de los procesos que controlan el intercambio de gases de carbono (C) y nitrógeno (N) entre el suelo y la atmósfera, en los sistemas forestales y agroforestales, son comprensibles las incógnitas existentes respecto a la estimación de los flujos de los gases de efecto invernadero (GEI) y la capacidad como reservorios de carbono de los suelos, bajo diferentes formas de uso y regímenes de alteración a escala regional y global. Esta escasez de información justifica la necesidad de caracterizar la dinámica de intercambio de GEI en los ecosistemas Mediterráneos, en especial en el contexto actual de cambio climático, y el incremento asociado de temperatura y periodos de sequía, alteración de los patrones de precipitación, y el riesgo de incendios forestales; cuyas consecuencias afectarán tanto a los compartimentos de C y de N del suelo como a la capacidad de secuestro de C de estos ecosistemas. Dentro de este contexto se enmarca la presente tesis doctoral cuyo objetivo ha sido cuantificar y caracterizar los flujos de dióxido de carbono (CO2), de oxido nitroso (N2O) y de metano (CH4), junto con los stocks de C y N, en suelos forestales de Quercus ilex, Quercus pyrenaica y Pinus sylvestris afectados por incendios forestales; así como el estudiar el efecto de la gestión y la cubierta arbórea en la respiración del suelo y los stocks de C y N en una dehesa situada en el centro de la Península Ibérica. De manera que los flujos de CO2, N2O y CH4; y los parámetros físico-químicos y biológicos del suelo fueron estudiados en los diferentes tratamientos y ecosistemas a lo largo del trabajo que se presenta. Los resultados obtenidos muestran la existencia de variaciones temporales y espaciales de la respiración del suelo dentro de una escala geográfica pequeña, controladas principalmente por la temperatura y la humedad del suelo; y por los contenidos de C y N del suelo en un bosque de Pinus sylvestris en la vertiente norte de la Sierra de Guadarrama , en España. El análisis de los efectos de los incendios forestales a largo plazo (6-8 años) revela que las pérdidas anuales de C a través de la respiración del suelo en las zonas quemadas de Quercus ilex, Quercus pyrenaica y Pinus sylvestris fueron 450 gCm-2yr-1, 790 gCm-2yr-1 y 1220 gCm-2yr-1, respectivamente; lo que representa una reducción del 43%, 22% y 11% en comparación con las zonas no quemadas de dichas especies, debido a la destrucción de la masa arbórea. El efecto del fuego también alteró los flujos N2O y CH4 del suelo, de una forma diferente en los distintos ecosistemas y estacionalidades estudiadas. De tal modo, que los suelos quemados mostraron una mayor oxidación del CH4 en las masas de Q. ilex, y una menor oxidación en las de P. sylvestris; además de una disminución de los flujos de N2O en Q. pyrenaica. Los incendios también afectaron los parámetros microclimáticos de los suelos forestales, observándose un incremento de la temperatura del suelo y una disminución de la humedad en los emplazamientos quemados que en los no quemados. Los cationes intercambiables, el pH, el cociente C/N, el contenido en raicillas y la biomasa microbiana también disminuyeron en las zonas quemadas. Aunque el C orgánico del suelo no se alteró de manera significativa, si lo hizo la calidad de la materia orgánica, disminuyendo el carbono lábil y aumentando las formas recalcitrantes lo que se tradujo en menor sensibilidad de la respiración del suelo a la temperatura (valores de Q10) en las zonas quemadas. Los resultados del estudio realizado en la Dehesa muestran que las actividades silvopastorales estudiadas afectaron levemente y de forma no constante a la respiración del suelo y las condiciones microclimáticas del suelo. Se observó una reducción 12% de la respiración del suelo por efecto del pastoreo no intensivo. Sin embargo, se observaron incrementos de 3Mg/ha en los stocks de C y de 0.3 Mg/ha en los stocks de N en los suelos pastoreados en comparación con los no pastoreados. Aunque, no se observó un claro efecto de la labranza sobre la respiración del suelo en nuestro experimento, sin embargo si se observó una disminución de 3.5 Mg/ha en las reservas de C y de 0.3 Mg/ ha en las de N en los suelos labrados comparados con los no labrados. La copa del arbolado influyó de forma positiva tanto en la respiración del suelo, como en los stocks de C y N de los suelos. La humedad del suelo jugó un papel relevante en la sensibilidad de la respiración a la temperatura del suelo. Nuestros resultados ponen de manifiesto la sensibilidad de la respiración del suelo a cambios en la humedad y los parámetros edáficos, y sugieren que la aplicación de modelos estándar para estimar la respiración del suelo en áreas geográficas pequeñas puede no ser adecuada a menos que otros factores sean considerados en combinación con la temperatura del suelo. Además, las diferentes respuestas de los flujos de gases de efecto invernadero a los cambios, años después de la ocurrencia de incendios forestales, destaca la necesidad de incluir estos cambios en las futuras investigaciones de la dinámica del carbono en los ecosistemas mediterráneos. Por otra parte, las respuestas divergentes en los valores de respiración del suelo y en los contenidos de C y N del suelo observados en la dehesa, además de la contribución de la copa de los árboles en los nutrientes del suelo ilustran la importancia de mantener la gestión tradicional aplicada en beneficio de la capacidad de almacenar C en la dehesa estudiada. La información obtenida en este trabajo pretende contribuir a la mejora del conocimiento de la dinámica y el balance de C en los sistemas mediterráneos, además de ayudar a predecir el impacto del cambio climático en el intercambio de C entre los ecosistemas forestales y agroforestales y la atmósfera. ABSTRACT Due to the complexity of the processes that control the exchange of carbon (C) and nitrogen (N) gasses between soils and the atmosphere in forest and agroforestry ecosystems, understandable uncertainties exist as regards the estimation of greenhouse gas (GHG) fluxes and the soil sink capacity at regional and global scale under different forms of land use and disturbance regimes. These uncertainties justify the need to characterize the exchange dynamics of GHG between the atmosphere and soils in Mediterranean terrestrial ecosystems, particularly in the current context of climate change and the associated increase in temperature, drought periods, heavy rainfall events, and increased risk of wildfires, which affect not only the C and N pools but also the soil C sink capacity of these ecosystems. Within this context, the aims of the present thesis were, firstly, to quantify and characterize the fluxes of carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) as well as the C and N stocks in Quercus ilex, Quercus pyrenaica and Pinus sylvestris stands affected by wildfires, and secondly, to study the effects of Quercus ilex canopy and management on both soil respiration and C and N pools in dehesa systems in the center of Iberian Peninsula. Soil CO2, N2O and CH4 fluxes, and soil physical-chemical and biological parameters were studied under the different treatments and ecosystems considered in this study. The results showed seasonal and spatial variations in soil respiration within small geographic areas, mainly controlled by soil temperature and moisture in addition to soil carbon and nitrogen stocks in mixed pine–oak forest ecosystems on the north facing slopes of the Sierra de Guadarrama in Spain. The analysis of long term effects of wildfires (6–8 years) revealed that annual carbon losses through soil respiration from burned sites in Quercus ilex, Quercus pyrenaica and Pinus sylvestris stands were 450 gCm-2yr-1, 790 gCm-2yr-1 and 1220 gCm-2yr-1, respectively; with burned sites emitting 43%, 22% and 11% less in burned as opposed to non-burned sites due the loss of trees. Fire may alter both N2O and CH4 fluxes although the magnitude of such variation depends on the site, soil characteristics and seasonal climatic conditions. The burned sites showed higher CH4 oxidation in Q.ilex stands, and lower oxidation rates in P. sylvestris stands. A reduction in N2O fluxes in Q. pyrenaica stands was detected at burned sites along with changes in soil microclimate; higher soil temperature and lower soil moisture content. Exchangeable cations, the C/N ratio, pH, fine root and microbial biomass were also found to decrease at burned sites. Although the soil organic carbon was not significantly altered, the quality of the organic matter changed, displaying a decrease in labile carbon and a relative increase in refractory forms, leading to lower sensitivity of soil respiration to temperature (Q10 values) at burned sites. The results from the dehesa study show that light grazing and superficial tilling practices used in the studied dehesa system in Spain had a slight but non-consistent impact on soil respiration and soil microclimate over the study period. The reduction in soil respiration in the dehesa system due to the effects of grazing was around 12 %. However, increments of 3Mg/ha in C stocks and 0.3 Mg/ha in N stocks in grazed soils were observed. Although no clear effect of tilling on soil respiration was found, a decrease of 3.5 Mg/ha in C stocks and 0.3 Mg/ha in N stocks was detected for tilled soils. The presence of a tree canopy induced increases in soil respiration, soil C and N stocks, while soil moisture was found to play an important role in soil respiration temperature response. Our results suggest that the use of standard models to estimate soil respiration in small geographical areas may not be adequate unless other factors are considered in addition to soil temperature. Furthermore, the different responses of GHG flux to climatic shifts, many years after the occurrence of wildfire, highlight the need to include these shifts in C dynamics in future research undertaken in Mediterranean ecosystems. Furthermore, divergent responses in soil respiration and soil C and N stocks to grazing or tilling practices in Dehesa systems, and the influence of tree canopy on soil respiration and soil nutrient content, illustrate the importance of maintaining beneficial management practices. Moreover, the carbon sequestration capacity of the Dehesa system studied may be enhanced through improvements in the management applied. It is hoped that the information obtained through this research will contribute towards improving our understanding of the dynamics and balance of C in Mediterranean systems, and help predict the impact of climate change on the exchange of C between forest and agroforestry ecosystems and the atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

tThe rate of metabolic processes demanding energy in tree stems changes in relation with prevailing cli-matic conditions. Tree water availability can affect stem respiration through impacts on growth, phloemtransport or maintenance of diverse cellular processes, but little is known on this topic. Here we moni-tored seasonal changes in stem CO2efflux (Fs), radial growth, sap flow and non-structural carbohydrates intrees of Quercus ilex in a Mediterranean forest stand subjected since 2003 to either partial (33%) through-fall exclusion (E) or unchanged throughfall (C). Fsincreased exponentially during the day by an effectof temperature, although sap flow attenuated the increase in Fsduring the day time. Over the year, Fsalso increased exponentially with increasing temperatures, but Fscomputed at a standard temperatureof 15?C (F15s) varied by almost 4-fold among dates. F15swas the highest after periods of stem growth anddecreased as tree water availability decreased, similarly in C and E treatments. The decline in F15swas notlinked to a depletion of soluble sugars, which increased when water stress was higher. The proportionof ecosystem respiration attributed to the stems was highest following stem growth (23.3%) and lowestduring the peak of drought (6.5%). High within-year variability in F15smakes unadvisable to pool annualdata of Fsvs. temperature to model Fsat short time scales (hours to months) in Mediterranean-type for-est ecosystems. We demonstrate that water availability is an important factor governing stem CO2effluxand suggest that trees in Mediterranean environments acclimate to seasonal drought by reducing stemrespiration. Stem respiratory rates do not seem to change after a long-term increase in drought intensity,however.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study is to identify and evaluate the relationship between Woodpigeon (Columba palumbus, Linnaeus, 1758) density and different environmental gradients (thermotype, ombrotype, continentality and latitudinal), land use and landscape structure, using geographic information systems and multivariate modelling. Transects (n = 396) were developed to estimate the density of Woodpigeon in the Marina Baja (Alicante, Spain) from 2006 to 2008. The highestdensity for Woodpigeon was in September-October (1.28birds/10ha) and the lowest inFebruary-March (0.34birds/10ha). Moreover, there were more Woodpigeons in areas with a mesomediterranean thermotypethan in thermomediterranean or supramediterranean ones. There was greater densityinthe intermediate zones compared to thecoast and interior. The natural or cultural landscape had the highest Woodpigeon density (1.53birds/10ha), with both denseand clear pine forest values standing out. Therefore, it is very important to conserve these traditional landscapes with adequate management strategies in order to maintain, resident and transient Woodpigeon populations. These natural areas are open places where the Woodpigeons find food and detect the presence ofpredators. Thus, this study will enable more precise knowledge of the ecological factors (habitat variables) that intervene in the distribution of Woodpigeon populations and their density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Issues determined by season: spring migration, breeding season, fall migration, winter season.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Responses of stomatal conductance (g(s)) and net photosynthesis (A) to changes in soil water availability, photosynthetic photon flux density (Q), air temperature (1) and leaf-to-air vapour pressure deficit (D) were investigated in 4-year-old trees of a dry inland provenance of Eucalyptus argophloia Blakely, and two dry inland provenances (Coominglah and Hungry Hills) and a humid coastal provenance (Wolvi) of Eucalyptus cloeziana F. Muell. between April 2001 and April 2002 in southeast Queensland, Australia. There were minimal differences in A, g, and water relations variables among the coastal and inland provenances of E. cloeziana but large differences between E. argophloia and E. cloeziana. E. argophloia and to a lesser extent the Hungry Hills (inland) provenance of E. cloeziana maintained relatively higher pre-dawn water potential (psi(pd)) during the dry season suggesting possible access to water at depth. Simple phenomenological models of stomatal conductance as a function of Q, T and D explained 60% of variation in gs in E. cloeziana and more than 75% in E. argophloia, when seasonal effect was incorporated in the model. A Ball-Berry model for net photosynthesis explained between 70 and 80% of observed variation in A in both species. These results have implications in matching the dry and humid provenances of E. cloeziana and E. argophloia to suitable sites in subtropical environments. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eddy covariance (EC) estimates of carbon dioxide (CO2) fluxes and energy balance are examined to investigate the functional responses of a mature mangrove forest to a disturbance generated by Hurricane Wilma on October 24, 2005 in the Florida Everglades. At the EC site, high winds from the hurricane caused nearly 100% defoliation in the upper canopy and widespread tree mortality. Soil temperatures down to -50 cm increased, and air temperature lapse rates within the forest canopy switched from statically stable to statically unstable conditions following the disturbance. Unstable conditions allowed more efficient transport of water vapor and CO2 from the surface up to the upper canopy layer. Significant increases in latent heat fluxes (LE) and nighttime net ecosystem exchange (NEE) were also observed and sensible heat fluxes (H) as a proportion of net radiation decreased significantly in response to the disturbance. Many of these impacts persisted through much of the study period through 2009. However, local albedo and MODIS (Moderate Resolution Imaging Spectro-radiometer) data (the Enhanced Vegetation Index) indicated a substantial proportion of active leaf area recovered before the EC measurements began 1 year after the storm. Observed changes in the vertical distribution and the degree of clumping in newly emerged leaves may have affected the energy balance. Direct comparisons of daytime NEE values from before the storm and after our measurements resumed did not show substantial or consistent differences that could be attributed to the disturbance. Regression analyses on seasonal time scales were required to differentiate the storm's impact on monthly average daytime NEE from the changes caused by interannual variability in other environmental drivers. The effects of the storm were apparent on annual time scales, and CO2 uptake remained approximately 250 g C m-2 yr-1 lower in 2009 compared to the average annual values measured in 2004-2005. Dry season CO2 uptake was relatively more affected by the disturbance than wet season values. Complex leaf regeneration dynamics on damaged trees during ecosystem recovery are hypothesized to lead to the variable dry versus wet season impacts on daytime NEE. In contrast, nighttime CO2 release (i.e., nighttime respiration) was consistently and significantly greater, possibly as a result of the enhanced decomposition of litter and coarse woody debris generated by the storm, and this effect was most apparent in the wet seasons compared to the dry seasons. The largest pre- and post-storm differences in NEE coincided roughly with the delayed peak in cumulative mortality of stems in 2007-2008. Across the hurricane-impacted region, cumulative tree mortality rates were also closely correlated with declines in peat surface elevation. Mangrove forest-atmosphere interactions are interpreted with respect to the damage and recovery of stand dynamics and soil accretion processes following the hurricane.