944 resultados para scrolls, roundels, palmette, interlocking S-motifs
Resumo:
The planctomycetes are a phylum of bacteria that have a unique cell compartmentalisation and yeast-like budding cell division and peptidoglycan-less proteinaceous cell walls. We wished to further our understanding of these unique organisms at the molecular level by searching for conserved amino acid sequence motifs and domains in the proteins encoded by Rhodopirellula baltica. Using BLAST and single-linkage clustering, we have discovered several new protein domains and sequence motifs in this planctomycete. R. baltica has multiple members of the newly discovered GEFGR protein family and the ASPIC C-terminal domain family, whilst most other organisms for which whole genome sequence is available have no more than one. Many of the domains and motifs appear to be restricted to the planctomycetes. It is possible that these protein domains and motifs may have been lost or replaced in other phyla, or they may have undergone multiple duplication events in the planctomycete lineage. One of the novel motifs probably represents a novel N-terminal export signal peptide. With their unique cell biology, it may be that the planctomycete cell compartmentalisation plan in particular needs special membrane transport mechanisms. The discovery of these new domains and motifs, many of which are associated with secretion and cell-surface functions, will help to stimulate experimental work and thus enhance further understanding of this fascinating group of organisms. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
beta-turns are important topological motifs for biological recognition of proteins and peptides. Organic molecules that sample the side chain positions of beta-turns have shown broad binding capacity to multiple different receptors, for example benzodiazepines. beta-turns have traditionally been classified into various types based on the backbone dihedral angles (phi 2, psi 2, phi 3 and psi 3). Indeed, 57-68% of beta-turns are currently classified into 8 different backbone families (Type I, Type II, Type I', Type II', Type VIII, Type VIa1, Type VIa2 and Type VIb and Type IV which represents unclassified beta-turns). Although this classification of beta-turns has been useful, the resulting beta-turn types are not ideal for the design of beta-turn mimetics as they do not reflect topological features of the recognition elements, the side chains. To overcome this, we have extracted beta-turns from a data set of non-homologous and high-resolution protein crystal structures. The side chain positions, as defined by C-alpha-C-beta vectors, of these turns have been clustered using the kth nearest neighbor clustering and filtered nearest centroid sorting algorithms. Nine clusters were obtained that cluster 90% of the data, and the average intra-cluster RMSD of the four C-alpha-C-beta vectors is 0.36. The nine clusters therefore represent the topology of the side chain scaffold architecture of the vast majority of beta-turns. The mean structures of the nine clusters are useful for the development of beta-turn mimetics and as biological descriptors for focusing combinatorial chemistry towards biologically relevant topological space.
Resumo:
Accurate strain energies due to nonplanar distortion of 114 isolated pentagon rule (IPR) fullerenes with 60-102 carbon atoms have been calculated based on B3LYP/6-31G(d) optimized structures. The calculated values of strain energy due to nonplanar distortion (E-np) are reproduced by three simple schemes based upon counts of 8, 16, and 30 distinct structural motifs composed of hexagons and pentagons. Using C-180 (I-h) and CN (I-h) (N is very large) as test molecules, the intrinsic limitations of the motif model based on six-membered rings (6-MRs) as the central unit have been discussed. On the basis of the relationship between the contributions of motifs to E-np and the number of five-membered rings (5-MRs) in motifs, we found that IPR fullerenes with dispersed 5-MRs present smaller nonplanar distortions.
Resumo:
Scorpion toxins are important physiological probes for characterizing ion channels. Molecular databases have limited functional annotation of scorpion toxins. Their function can be inferred by searching for conserved motifs in sequence signature databases that are derived statistically but are not necessarily biologically relevant. Mutation studies provide biological information on residues and positions important for structure-function relationship but are not normally used for extraction of binding motifs. 3D structure analyses also aid in the extraction of peptide motifs in which non-contiguous residues are clustered spatially. Here we present new, functionally relevant peptide motifs for ion channels, derived from the analyses of scorpion toxin native and mutant peptides. Copyright (c) 2006 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
Immune cells respond to bacterial DNA containing unmethylated CpG motifs via Toll-like receptor 9 (TLR9). Given the apparent role of TLR9 in development of systemic lupus erythernatosus (SLE), there is interest in the development of TLR9 inhibitors. TLR9-mediated responses are reported to be inhibited by a confusing variety of different DNA sequences and structures. To aid characterization, we have provisionally categorized TLR9-inhibitory oligodeoxynucleoti des (ODN) into 4 classes, on the basis of sequence and probable mode of action. Class I are short G-rich ODN, which show sequence-specific inhibition of all TLR9 responses, and may be direct competitive inhibitors for DNA binding to TLR9. Class II are telomeric repeat motifs that inhibit STAT signaling, and thus are not specific to TLR9 responses. Because Class II ODN are generally made as 24-base phosphorothioate-modified ODN (PS-ODN), they also fall into Class IV, defined as long PS-ODN, which inhibit TLR9 responses in a sequence-nonspecific manner. Class III includes oligo (dG) that forms a 4-stranded structure and inhibits DNA uptake. The Class I G-rich motifs show the most promise as selective and potent TLR9 inhibitors for therapeutic applications.
Resumo:
Peroxisomes are small subcellular compartments that utilize proteins manufactured in the cytoplasm. Proteins use one of two peroxisomal import pathways. This paper presents a simple evolutionary search for a motif that describes the signal used by one of the two pathways: PTS2. The evolved motif has a discriminative accuracy exceeding previously manually curated motifs and can be used to screen genomic data for putative peroxisomal proteins.
Resumo:
The CGRP1 receptor exists as a heterodimeric complex between a single-pass transmembrane accessory protein (RAMP1) and a family B G-protein-coupled receptor (GPCR) called the calcitonin receptor-like receptor (CLR). This study investigated the structural motifs found in the intracellular loops (ICLs) of this receptor. Molecular modeling was used to predict active and inactive conformations of each ICL. Conserved residues were altered to alanine by site-directed mutagenesis. cAMP accumulation, cell-surface expression, agonist affinity, and CGRP-stimulated receptor internalization were characterized. Within ICL1, L147 and particularly R151 were important for coupling to Gs. R151 may interact directly with the G-protein, accessing it following conformational changes involving ICL2 and ICL3. At the proximal end of ICL3, I290 and L294, probably lying on the same face of an α helix, formed a G-protein coupling motif. The largest effects on coupling were observed with I290A; additionally, it reduced CGRP affinity and impaired internalization. 1290 may interact with TM6 to stabilize the conformation of ICL3, but it could also interact directly with Gs. R314, at the distal end of ICL3, impaired G-protein coupling and to a lesser extent reduced CGRP affinity; it may stabilize the TM6-ICL3 junction by interacting with the polar headgroups of membrane phospholipids. Y215 and L214 in ICL2 are required for cell-surface expression; they form a microdomain with H216 which has the same function. This study reveals similarities between the activation of CLR and other GPCRs in the role of TM6 and ICL3 but shows that other conserved motifs differ in their function. © 2006 American Chemical Society.
Resumo:
The purpose of this article is to delimit the role of pragmatic specialization in the evolution of negation in French. The change in the marking of sentential negation is believed to proceed in characterized stages that would together constitute the Jespersen cycle. As a marker becomes the default expression of negation, the other markers do not necessarily fade away, and are maintained with specialized roles that include pragmatic functions. One such pragmatic function is that of activation (Dryer 1996), by which a proposition is presented as accessible to the hearer. Activation is shown to motivate the use of preverbal non that competes with 'ne' for several centuries. The claims that the emergence of postverbal pas in early French and the loss of 'ne' in contemporary spoken French are associated with activation are considered on the basis of novel data. It is concluded that pragmatic functions contribute to language change by providing marked options that may be conferred the default status in a grammatical paradigm.
Resumo:
A survey of crystal structures containing hydantoin, dihydrouracil and uracil derivatives in the Cambridge Structural Database revealed four main types of hydrogen bond motifs when derivatives with extra substituents able to interfere with the main motif are excluded. All these molecules contain two hydrogen bond donors and two hydrogen bond acceptors in the sequence of NH, C = O, NH, and C=O groups within a 5-membered ring (hydantoin) and two 6-membered rings (dihydrouracil and uracil). In all cases, both ring NH groups act as donors in the main hydrogen bond motif but there is an excess of hydrogen bond acceptors (two C=O able to accept twice each) and so two possibilities are found: (i) each carbonyl O atom may accept one hydrogen bond or (ii) one carbonyl O atom may accept two hydrogen bonds while the other does not participate in the hydrogen bonding. We observed different preferences in the type and symmetry of the motifs adopted by the different derivatives, and a good agreement is found between motifs observed experimentally and those predicted using computational methods. We identified certain molecular factors such as chirality, substituent size and the possibility of C-H⋯O interactions as important factors influencing the motif observation. © 2012 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.
Resumo:
Background: During alternative splicing, the inclusion of an exon in the final mRNA molecule is determined by nuclear proteins that bind cis-regulatory sequences in a target pre-mRNA molecule. A recent study suggested that the regulatory codes of individual RNA-binding proteins may be nearly immutable between very diverse species such as mammals and insects. The model system Drosophila melanogaster therefore presents an excellent opportunity for the study of alternative splicing due to the availability of quality EST annotations in FlyBase. Methods: In this paper, we describe an in silico analysis pipeline to extract putative exonic splicing regulatory sequences from a multiple alignment of 15 species of insects. Our method, ESTs-to-ESRs (E2E), uses graph analysis of EST splicing graphs to identify mutually exclusive (ME) exons and combines phylogenetic measures, a sliding window approach along the multiple alignment and the Welch’s t statistic to extract conserved ESR motifs. Results: The most frequent 100% conserved word of length 5 bp in different insect exons was “ATGGA”. We identified 799 statistically significant “spike” hexamers, 218 motifs with either a left or right FDR corrected spike magnitude p-value < 0.05 and 83 with both left and right uncorrected p < 0.01. 11 genes were identified with highly significant motifs in one ME exon but not in the other, suggesting regulation of ME exon splicing through these highly conserved hexamers. The majority of these genes have been shown to have regulated spatiotemporal expression. 10 elements were found to match three mammalian splicing regulator databases. A putative ESR motif, GATGCAG, was identified in the ME-13b but not in the ME-13a of Drosophila N-Cadherin, a gene that has been shown to have a distinct spatiotemporal expression pattern of spliced isoforms in a recent study. Conclusions: Analysis of phylogenetic relationships and variability of sequence conservation as implemented in the E2E spikes method may lead to improved identification of ESRs. We found that approximately half of the putative ESRs in common between insects and mammals have a high statistical support (p < 0.01). Several Drosophila genes with spatiotemporal expression patterns were identified to contain putative ESRs located in one exon of the ME exon pairs but not in the other.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.