950 resultados para sciences européennes, applications
Resumo:
Based on a long-term ecological monitoring, the present study chose the most dominant benthic macroinvertebrate (Baetis spp.) as target organisms in Xiangxi River, built the habitat suitability models (HSMs) for water depth, current velocity and substrate, respectively, which is the first aquatic organisms model for habitat suitability in the Chinese Mainland with a long-term consecutive in situ measurement. In order to protect the biointegrity and function of the river ecosystem, the theory system of instream environmental flow should be categorized into three hierarchies, namely minimum required instream flow (hydrological level), minimum instream environmental flow (biospecies level), and optimum instream environmental flow (ecosystem level). These three hierarchies of instream environmental flow models were then constructed with the hydrological and weighted usable area (WUA) method. The results show that the minimum required instream flow of Xiangxi River calculated by the Tennant method (10% of the mean annual flow) was 0.615 m(3) s(-1); the minimum instream environmental flow accounted for 19.22% of the mean annual flow (namely 1.182 m(3) s(-1)), which was the damaged river channel. ow in the dry season; and 42.91% of the mean annual flow (namely 2.639 m(3) s(-1)) should be viewed as the optimum instream environmental flow in order to protect the health of the river ecosystem, maintain the instream biodiversity, and reduce the impact of small hydropower stations nearby the Xiangxi River. We recommend that the hydrological and biological methods can help establish better instream environmental. ow models and design best management practices for use in the small hydropower station project. (C) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
The gonad is an essential organ for generating sperm and ova in vertebrates. This review describes several pilot studies on gonad gene manipulation and development in fish. With antisense RNA techniques, we suppressed the gonad development, and thus the fertility, of an antisense gonadotropin-releasing hormone (sGnRH) transgenic common carp. Then, using a tissue-specific exogenous gene excision strategy with sexual compensation, we knocked out the gonad-specific transgene. Under the control of the rainbow trout protamine promoter, the transgenic fish expressed the reporter gene eGFP specifically in the spermary. These results indicate that the fish gonad is a new model organ that can improve contemporary biotechnology experiments. Herein we discuss the potential of fish gonad manipulation for resolving important biosafety problems regarding transgenic fish generation and producing the new transgenic animal bioreactor.
Resumo:
GaAs single crystal has been grown in recoverable satellite. Hall measurements indicate that the GaAs shows semi-insulating behavior. The structural properties of the crystal have been improved obviously, and their uniformity has been improved as well. The stoichiometry and its distribution in space-grown GaAs are improved greatly compared with the GaAs single crystal grown terrestrially. The properties of integrated circuits made by direct ion-implantation on space-grown GaAs are better than those made on ground-grown materials. These results show that the stoichiometry in semi-insulating GaAs seriously affects the properties of related devices.
Resumo:
The simultaneous control of residual stress and resistivity of polysilicon thin films by adjusting the deposition parameters and annealing conditions is studied. In situ boron doped polysilicon thin films deposited at 520 ℃ by low pressure chemical vapor deposition (LPCVD) are amorphous with relatively large compressive residual stress and high resistivity. Annealing the amorphous films in a temperature range of 600-800 ℃ gives polysilicon films nearly zero-stress and relatively low resistivity. The low residual stress and low resistivity make the polysilicon films attractive for potential applications in micro-electro-mechanical-systems (MEMS) devices, especially in high resonance frequency (high-f) and high quality factor (high-Q MEMS resonators. In addition, polysilicon thin films deposited at 570 ℃ and those without the post annealing process have low resistivities of 2-5 mΩ·cm. These reported approaches avoid the high temperature annealing process (> 1000℃), and the promising properties of these films make them suitable for high-Q and high-f MEMS devices.
Resumo:
A large area multi-finger configuration power SiGe HBT device(with an emitter area of about 880μm~2)was fabricated with 2μm double-mesa technology.The maximum DC current gain β is 214.The BV_(CEO) is up to 10V,and the BV_(CBO) is up to 16V with a collector doping concentration of 1×10~(17)cm~(-3) and collector thickness of 400nm.The device exhibits a maximum oscillation frequency f_(max) of 19.3GHz and a cut-off frequency f_T of 18.0GHz at a DC bias point of I_C=30mA and V_(CE)=3V.MSG(maximum stable gain)is 24.5dB,and U(Mason unilateral gain)is 26.6dB at 1GHz.Due to the novel distribution layout,no notable current gain fall-off or thermal effects are observed in the I-V characteristics at high collector current.
Resumo:
A high performance AlAs/In0.53 Ga0.47 As/InAs resonant tunneling diode (RTD) on InP substrate is fabricated by inductively coupled plasma etching. This RTD has a peak-to-valley current ratio (PVCR) of 7. 57 and a peak current density Jp = 39.08kA/cm^2 under forward bias at room temperature. Under reverse bias, the corresponding values are 7.93 and 34.56kA/cm^2 . A resistive cutoff frequency of 18.75GHz is obtained with the effect of a parasitic probe pad and wire. The slightly asymmetrical current-voltage characteristics with a nominally symmetrical structure are also discussed.
Resumo:
A two-dimensional (2D) multi-channel silicon-based microelectrode array is developed for recording neural signals. Three photolithographic masks are utilized in the fabrication process. SEM images show that the microprobe is 1. 2mm long,100μm wide,and 30μm thick, with recording sites spaced 200μm apart for good signal isolation. For the individual recording sites, the characteristics of impedance versus frequency are shown by in vitro testing. The impedance declines from 14MΩ to 1.9kv as the frequency changes from 0 to 10MHz. A compatible PCB (print circuit board) aids in the less troublesome implantation and stabilization of the microprobe.
Resumo:
A multi-finger structure power SiGe HBT device (with an emitter area of about 166μm^2) is fabricated with very simple 2μm double-mesa technology. The DC current gain β is 144.25. The B-C junction breakdown voltage reaches 9V with a collector doping concentration of 1 × 10^17cm^-3 and a collector thickness of 400nm. Though our data are influenced by large additional RF probe pads, the device exhibits a maximum oscillation frequency fmax of 10.1GHz and a cut-off frequency fτ of 1.8GHz at a DC bias point of IC=10mA and VCE = 2.5V.
Resumo:
The high glass transition temperature polymer polyetherketone doped with disperse red 13 (DR13/PEK-c) has been prepared by the spin-coating method. Through in situ second-harmonic generation, the corona poling temperature was optimized by measuring the temperature dependence of the in situ second-harmonic generation signal intensity under the poling electric field. The linear electro-optic coefficients of the poled polymer films have been determined at 632.8 nm by using a simple interferometric technique. The polymer system was measured after 13 000 h, and found that it remained at 80% of its initial value.
Resumo:
Self-assembled In_0.35Ga_0.65As/GaAs quantum dots with low indium content are grown under different growth temperature and investigated using contact atomic force microscopy(AFM). In order to obtain high density and high uniformityu of quantum dots, optimized conditions are concluded for MBE growth. Optimized growth condi-tions also compared with these of InAs/GaAs quantum dots. This will be very useful for InGaAs/GaAs QDs opto-electronic applications, such as quantum dots lasers and quantum dots infrared photodetectors.
Resumo:
Surface initiated polymerization (SIP) has become an attractive method for tailoring physical and chemical properties of surfaces for a broad range of applications. Most of those application relied on the merit of a high density coating. In this study we explored a long overlooked field of SIP. SIP from substrates of low initiator density. We combined ellipsometry with AFM to investigate the effect of initiatior density and polymerization time on the morphology of polymer coatings. In addition, we carefully adjusted the nanoscale separation of polymer chains to achieve a balance between nonfouling and immobilization capacities. We further tested the performance of those coating on various biosensors, such as quartz crystal microbalance, surface plasmon resonance, and protein microarrays. The optimized matrices enhanced the performance of those biosensors. This report shall encourage researches to explore new frontiers in SIP that go beyond polymer brushes.
Resumo:
In this paper, new topological indices, EA Sigma and EAmax, are introduced. They are based on the extended adjacency matrices of molecules, in which the influences of factors of heteroatoms and multiple bonds were considered. The results show that EA Sigm
Resumo:
In this paper, three new topological indices, A(x1), A(x2), and A(x3), have been developed for use in multivariate analysis in structure-property relationship (SPR) and structure-activity relationship (SAR) studies. Good results have been obtained by using them to predict the physical and chemical properties and biological activities of some organic compounds.