932 resultados para robotics control actuator feedback linearization
Resumo:
This paper presents a relational positioning methodology for flexibly and intuitively specifying offline programmed robot tasks, as well as for assisting the execution of teleoperated tasks demanding precise movements.In relational positioning, the movements of an object can be restricted totally or partially by specifying its allowed positions in terms of a set of geometric constraints. These allowed positions are found by means of a 3D sequential geometric constraint solver called PMF – Positioning Mobile with respect to Fixed. PMF exploits the fact that in a set of geometric constraints, the rotational component can often be separated from the translational one and solved independently.
Resumo:
The present study was done with two different servo-systems. In the first system, a servo-hydraulic system was identified and then controlled by a fuzzy gainscheduling controller. The second servo-system, an electro-magnetic linear motor in suppressing the mechanical vibration and position tracking of a reference model are studied by using a neural network and an adaptive backstepping controller respectively. Followings are some descriptions of research methods. Electro Hydraulic Servo Systems (EHSS) are commonly used in industry. These kinds of systems are nonlinearin nature and their dynamic equations have several unknown parameters.System identification is a prerequisite to analysis of a dynamic system. One of the most promising novel evolutionary algorithms is the Differential Evolution (DE) for solving global optimization problems. In the study, the DE algorithm is proposed for handling nonlinear constraint functionswith boundary limits of variables to find the best parameters of a servo-hydraulic system with flexible load. The DE guarantees fast speed convergence and accurate solutions regardless the initial conditions of parameters. The control of hydraulic servo-systems has been the focus ofintense research over the past decades. These kinds of systems are nonlinear in nature and generally difficult to control. Since changing system parameters using the same gains will cause overshoot or even loss of system stability. The highly non-linear behaviour of these devices makes them ideal subjects for applying different types of sophisticated controllers. The study is concerned with a second order model reference to positioning control of a flexible load servo-hydraulic system using fuzzy gainscheduling. In the present research, to compensate the lack of dampingin a hydraulic system, an acceleration feedback was used. To compare the results, a pcontroller with feed-forward acceleration and different gains in extension and retraction is used. The design procedure for the controller and experimental results are discussed. The results suggest that using the fuzzy gain-scheduling controller decrease the error of position reference tracking. The second part of research was done on a PermanentMagnet Linear Synchronous Motor (PMLSM). In this study, a recurrent neural network compensator for suppressing mechanical vibration in PMLSM with a flexible load is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are used to avoid the local minimum problem, and estimate the states of system respectively. The proposed control method is firstly designed by using non-linear simulation model built in Matlab Simulink and then implemented in practical test rig. The proposed method works satisfactorily and suppresses the vibration successfully. In the last part of research, a nonlinear load control method is developed and implemented for a PMLSM with a flexible load. The purpose of the controller is to track a flexible load to the desired position reference as fast as possible and without awkward oscillation. The control method is based on an adaptive backstepping algorithm whose stability is ensured by the Lyapunov stability theorem. The states of the system needed in the controller are estimated by using the Kalman filter. The proposed controller is implemented and tested in a linear motor test drive and responses are presented.
Resumo:
The need for high performance, high precision, and energy saving in rotating machinery demands an alternative solution to traditional bearings. Because of the contactless operation principle, the rotating machines employing active magnetic bearings (AMBs) provide many advantages over the traditional ones. The advantages such as contamination-free operation, low maintenance costs, high rotational speeds, low parasitic losses, programmable stiffness and damping, and vibration insulation come at expense of high cost, and complex technical solution. All these properties make the use of AMBs appropriate primarily for specific and highly demanding applications. High performance and high precision control requires model-based control methods and accurate models of the flexible rotor. In turn, complex models lead to high-order controllers and feature considerable computational burden. Fortunately, in the last few years the advancements in signal processing devices provide new perspective on the real-time control of AMBs. The design and the real-time digital implementation of the high-order LQ controllers, which focus on fast execution times, are the subjects of this work. In particular, the control design and implementation in the field programmable gate array (FPGA) circuits are investigated. The optimal design is guided by the physical constraints of the system for selecting the optimal weighting matrices. The plant model is complemented by augmenting appropriate disturbance models. The compensation of the force-field nonlinearities is proposed for decreasing the uncertainty of the actuator. A disturbance-observer-based unbalance compensation for canceling the magnetic force vibrations or vibrations in the measured positions is presented. The theoretical studies are verified by the practical experiments utilizing a custom-built laboratory test rig. The test rig uses a prototyping control platform developed in the scope of this work. To sum up, the work makes a step in the direction of an embedded single-chip FPGA-based controller of AMBs.
Resumo:
Durante toda la evolución de la tecnología, se han empleado aparatos interconexionados por cables. Los cables limitan la libertad de movimiento del usuario y pueden captar interferencias entre ellos si la red de cableado es elevada. Mientras avanzaba la tecnología inalámbrica, se ha ido adaptando al equipamiento electrónico a la vez que se iban haciendo cada vez más pequeños. Por esto, se impone la necesidad de utilizarlos como controles a distancia sin el empleo de cables debido a los inconvenientes que estos conllevan. El presente trabajo, pretende unificar tres tecnologías que pueden tener en el futuro una gran afinidad. · Dispositivos basados en el sistema Android. Desde sus inicios, han tenido una evolución meteórica. Se han ido haciendo cada vez más rápidos y mejores. · Sistemas inalámbricos. Los sistemas wifi o bluetooth, se han ido incorporando a nuestras vidas cada vez más y están prácticamente en cualquier aparato. · Robótica. Cualquier proceso de producción incorpora un robot. Son necesarios para hacer muchos trabajos que, aunque el hombre lo puede realizar, un robot reduce los tiempos y la peligrosidad de los procesos. Aunque las dos primeras tecnologías van unidas, ¿quién no tiene un teléfono con conexión wifi y bluetooth?, pocos diseños aúnan estos campos con la Robótica. El objetivo final de este trabajo es realizar una aplicación en Android para el control remoto de un robot, empleando el sistema de comunicación inalámbrico. La aplicación desarrollada, permite controlar el robot a conveniencia del usuario en un entorno táctil/teledirigido. Gracias a la utilización de simulador en ambos lenguajes (RAPID y Android), ha sido posible realizar la programación sin tener que estar presente ante el robot objeto de este trabajo. A través de su progreso, se ha ido evolucionando en la cantidad de datos enviados al robot y complejidad en su procesamiento, a la vez que se ha mejorado en la estética de la aplicación. Finalmente se usó la aplicación desarrollada con el robot, consiguiendo con éxito que realizara los movimientos que eran enviados con la tablet programada.
The effects of real time control of welding parameters on weld quality in plasma arc keyhole welding
Resumo:
Joints intended for welding frequently show variations in geometry and position, for which it is unfortunately not possible to apply a single set of operating parameters to ensure constant quality. The cause of this difficulty lies in a number of factors, including inaccurate joint preparation and joint fit up, tack welds, as well as thermal distortion of the workpiece. In plasma arc keyhole welding of butt joints, deviations in the gap width may cause weld defects such as an incomplete weld bead, excessive penetration and burn through. Manual adjustment of welding parameters to compensate for variations in the gap width is very difficult, and unsatisfactory weld quality is often obtained. In this study a control system for plasma arc keyhole welding has been developed and used to study the effects of the real time control of welding parameters on gap tolerance during welding of austenitic stainless steel AISI 304L. The welding tests demonstrated the beneficial effect of real time control on weld quality. Compared with welding using constant parameters, the maximum tolerable gap width with an acceptable weld quality was 47% higher when using the real time controlled parameters for a plate thickness of 5 mm. In addition, burn through occurred with significantly larger gap widths when parameters were controlled in real time. Increased gap tolerance enables joints to be prepared and fit up less accurately, saving time and preparation costs for welding. In addition to the control system, a novel technique for back face monitoring is described in this study. The test results showed that the technique could be successfully applied for penetration monitoring when welding non magnetic materials. The results also imply that it is possible to measure the dimensions of the plasma efflux or weld root, and use this information in a feedback control system and, thus, maintain the required weld quality.
Resumo:
Broadcasting systems are networks where the transmission is received by several terminals. Generally broadcast receivers are passive devices in the network, meaning that they do not interact with the transmitter. Providing a certain Quality of Service (QoS) for the receivers in heterogeneous reception environment with no feedback is not an easy task. Forward error control coding can be used for protection against transmission errors to enhance the QoS for broadcast services. For good performance in terrestrial wireless networks, diversity should be utilized. The diversity is utilized by application of interleaving together with the forward error correction codes. In this dissertation the design and analysis of forward error control and control signalling for providing QoS in wireless broadcasting systems are studied. Control signaling is used in broadcasting networks to give the receiver necessary information on how to connect to the network itself and how to receive the services that are being transmitted. Usually control signalling is considered to be transmitted through a dedicated path in the systems. Therefore, the relationship of the signaling and service data paths should be considered early in the design phase. Modeling and simulations are used in the case studies of this dissertation to study this relationship. This dissertation begins with a survey on the broadcasting environment and mechanisms for providing QoS therein. Then case studies present analysis and design of such mechanisms in real systems. The mechanisms for providing QoS considering signaling and service data paths and their relationship at the DVB-H link layer are analyzed as the first case study. In particular the performance of different service data decoding mechanisms and optimal signaling transmission parameter selection are presented. The second case study investigates the design of signaling and service data paths for the more modern DVB-T2 physical layer. Furthermore, by comparing the performances of the signaling and service data paths by simulations, configuration guidelines for the DVB-T2 physical layer signaling are given. The presented guidelines can prove useful when configuring DVB-T2 transmission networks. Finally, recommendations for the design of data and signalling paths are given based on findings from the case studies. The requirements for the signaling design should be derived from the requirements for the main services. Generally, these requirements for signaling should be more demanding as the signaling is the enabler for service reception.
Centralized Motion Control of a Linear Tooth Belt Drive: Analysis of the Performance and Limitations
Resumo:
A centralized robust position control for an electrical driven tooth belt drive is designed in this doctoral thesis. Both a cascaded control structure and a PID based position controller are discussed. The performance and the limitations of the system are analyzed and design principles for the mechanical structure and the control design are given. These design principles are also suitable for most of the motion control applications, where mechanical resonance frequencies and control loop delays are present. One of the major challenges in the design of a controller for machinery applications is that the values of the parameters in the system model (parameter uncertainty) or the system model it self (non-parametric uncertainty) are seldom known accurately in advance. In this thesis a systematic analysis of the parameter uncertainty of the linear tooth beltdrive model is presented and the effect of the variation of a single parameter on the performance of the total system is shown. The total variation of the model parameters is taken into account in the control design phase using a Quantitative Feedback Theory (QFT). The thesis also introduces a new method to analyze reference feedforward controllers applying the QFT. The performance of the designed controllers is verified by experimentalmeasurements. The measurements confirm the control design principles that are given in this thesis.
Resumo:
The objective of the this research project is to develop a novel force control scheme for the teleoperation of a hydraulically driven manipulator, and to implement an ideal transparent mapping between human and machine interaction, and machine and task environment interaction. This master‘s thesis provides a preparatory study for the present research project. The research is limited into a single degree of freedom hydraulic slider with 6-DOF Phantom haptic device. The key contribution of the thesis is to set up the experimental rig including electromechanical haptic device, hydraulic servo and 6-DOF force sensor. The slider is firstly tested as a position servo by using previously developed intelligent switching control algorithm. Subsequently the teleoperated system is set up and the preliminary experiments are carried out. In addition to development of the single DOF experimental set up, methods such as passivity control in teleoperation are reviewed. The thesis also contains review of modeling of the servo slider in particular reference to the servo valve. Markov Chain Monte Carlo method is utilized in developing the robustness of the model in presence of noise.
Resumo:
The purpose of this doctoral thesis is to widen and develop our theoretical frameworks for discussion and analyses of feedback practices in management accounting, particularly shedding light on its formal and informal aspects. The concept of feedback in management accounting has conventionally been analyzed within cybernetic control theory, in which feedback flows as a diagnostic or comparative loop between measurable outputs and pre-set goals (see e.g. Flamholtz et al. 1985; Flamholtz 1996, 1983), i.e. as a formal feedback loop. However, the everyday feedback practices in organizations are combinations of formal and informal elements. In addition to technique-driven feedback approaches (like budgets, measurement, and reward systems) we could also categorize social feedback practices that managers see relevant and effective in the pursuit of organizational control. While cybernetics or control theories successfully capture rational and measured aspects of organizational performance and offer a broad organizational context for the analysis, many individual and informal aspects remain vague and isolated. In order to discuss and make sense of the heterogeneous field of interpretations of formal and informal feedback, both in theory and practice, dichotomous approaches seem to be insufficient. Therefore, I suggest an analytical framework of formal and informal feedback with three dimensions (3D’s): source, time, and rule. Based on an abductive analysis of the theoretical and empirical findings from an interpretive case study around a business unit called Division Steelco, the 3Dframework and formal and informal feedback practices are further elaborated vis-á-vis the four thematic layers in the organizational control model by Flamholtz et al. (1985; Flamholtz 1996, 1983): core control system, organizational structure, organizational culture, and external environment. Various personal and cultural meanings given to the formal and informal feedback practices (“feedback as something”) create multidimensional interpretative contexts. Multidimensional frameworks aim to capture and better understand both the variety of interpretations and their implications to the functionality of feedback practices, important in interpretive research.
Resumo:
Commercially available haptic interfaces are usable for many purposes. However, as generic devices they are not the most suitable for the control of heavy duty mobile working machines like mining machines, container handling equipment and excavators. Alternative mechanical constructions for a haptic controller are presented and analysed. A virtual reality environment (VRE) was built to test the proposed haptic controller mechanisms. Verification of an electric motor emulating a hydraulic pump in the electro-hydraulic system of a mobile working machine is carried out. A real-time simulator using multi-body-dynamics based software with hardware-in-loop (HIL) setup was used for the tests. Recommendations for further development of a haptic controller and emulator electric motor are given.
Resumo:
The objective of this work is to describe the design and the implementation of an experiment to study the dynamics and the active control of a slewing multi-link flexible structure. The experimental apparatus was designed to be representative of a flexible space structure such as a satellite with multiple flexible appendages. In this study we describe the design procedures, the analog and digital instrumentation, the analytical modeling together with model validation studies carried out through experimental modal testing and parametric system identification studies in the frequency domain. Preliminary results of a simple positional control where the sensor and the actuator are positioned physically at the same point is also described.
Resumo:
A control law was designed for a satellite launcher ( rocket ) vehicle using eigenstructure assignment in order that the vehicle tracks a reference attitude and also to decouple the yaw response from roll and pitch manoeuvres and to decouple the pitch response from roll and yaw manoeuvres. The design was based on a complete linear coupled model obtained from the complete vehicle non linear model by linearization at each trajectory point. After all, the design was assessed with the vehicle time varying non-linear model showing a good performance and robustness. The used design method is explained and a case study for the Brazilian satellite launcher ( VLS Rocket ) is reported.
Resumo:
This paper studies the effect of time delay on the active non-linear control of dynamically loaded flexible structures. The behavior of non-linear systems under state feedback control, considering a fixed time delay for the control force, is investigated. A control method based on non-linear optimal control, using a tensorial formulation and state feedback control is used. The state equations and the control forces are expressed in polynomial form and a performance index, quadratic in both state vector and control forces, is used. General polynomial representations of the non-linear control law are obtained and implemented for control algorithms up to the fifth order. This methodology is applied to systems with quadratic and cubic non-linearities. Strongly non-linear systems are tested and the effectiveness of the control system including a delay for the application of control forces is discussed. Numerical results indicate that the adopted control algorithm can be efficient for non-linear systems, chiefly in the presence of strong non-linearities but increasing time delay reduces the efficiency of the control system. Numerical results emphasize the importance of considering time delay in the project of active structural control systems.
Resumo:
An Autonomous Mobile Robot battery driven, with two traction wheels and a steering wheel is being developed. This Robot central control is regulated by an IPC, which controls every function of security, steering, positioning localization and driving. Each traction wheel is operated by a DC motor with independent control system. This system is made up of a chopper, an encoder and a microcomputer. The IPC transmits the velocity values and acceleration ramp references to the PIC microcontrollers. As each traction wheel control is independent, it's possible to obtain different speed values for each wheel. This process facilities the direction and drive changes. Two different strategies for speed velocity control were implemented; one works with PID, and the other with fuzzy logic. There were no changes in circuits and feedback control, except for the PIC microcontroller software. Comparing the two different speed control strategies the results were equivalent. However, in relation to the development and implementation of these strategies, the difficulties were bigger to implement the PID control.
Resumo:
Industrial applications demand that robots operate in agreement with the position and orientation of their end effector. It is necessary to solve the kinematics inverse problem. This allows the displacement of the joints of the manipulator to be determined, to accomplish a given objective. Complete studies of dynamical control of joint robotics are also necessary. Initially, this article focuses on the implementation of numerical algorithms for the solution of the kinematics inverse problem and the modeling and simulation of dynamic systems. This is done using real time implementation. The modeling and simulation of dynamic systems are performed emphasizing off-line programming. In sequence, a complete study of the control strategies is carried out through the study of several elements of a robotic joint, such as: DC motor, inertia, and gearbox. Finally a trajectory generator, used as input for a generic group of joints, is developed and a proposal of the controller's implementation of joints, using EPLD development system, is presented.