971 resultados para road safety
Resumo:
Nowadays, road safety and traffic congestion are major concerns worldwide. This is why research on vehicular communication is very vital. In static scenarios vehicles behave typically like in an office network where nodes transmit without moving and with no defined position. This paper analyses the impact of context information on existing popular rate adaptation algorithms. Our simulation was done in MATLAB by observing the impact of context information on these algorithms. Simulation was performed for both static and mobile cases.Our simulations are based on IEEE 802.11p wireless standard. For static scenarios vehicles do not move and without defined positions, while for the mobile case, vehicles are mobile with uniformly selected speed and randomized positions. Network performance are analysed using context information. Our results show that in mobility when context information is used, the system performance can be improved for all three rate adaptation algorithms. That can be explained by that with range checking, when many vehicles are out of communication range, less vehicles contend for network resources, thereby increasing the network performances. © 2013 IEEE.
Resumo:
Wireless-communication technology can be used to improve road safety and to provide Internet access inside vehicles. This paper proposes a cross-layer protocol called coordinated external peer communication (CEPEC) for Internet-access services and peer communications for vehicular networks. We assume that IEEE 802.16 base stations (BS) are installed along highways and that the same air interface is equipped in vehicles. Certain vehicles locating outside of the limited coverage of their nearest BSs can still get access to the Internet via a multihop route to their BSs. For Internet-access services, the objective of CEPEC is to increase the end-to-end throughput while providing a fairness guarantee in bandwidth usage among road segments. To achieve this goal, the road is logically partitioned into segments of equal length. A relaying head is selected in each segment that performs both local-packet collecting and aggregated packets relaying. The simulation results have shown that the proposed CEPEC protocol provides higher throughput with guaranteed fairness in multihop data delivery in vehicular networks when compared with the purely IEEE 802.16-based protocol.
Resumo:
A percentagem de utilização de motociclos tem vindo a crescer relativamente à utilização de veículos automóveis. Provavelmente, este número continuará a aumentar anualmente devido a diversos fatores: a mobilidade, a flexibilidade de circulação e o menor gasto de combustível. No entanto, um dos principais problemas da condução de motociclos é o elevado risco de acidente, comparativamente com os veículos automóveis. A segurança do condutor e passageiros, quando sujeitos a um acidente, merece total atenção. Convém, pois, encontrar soluções com capacidade de prevenir ou ajudar a minimizar o número de mortalidade que possam ocorrer diariamente. Uma maior atenção às medidas de segurança rodoviária veio diminuir o número de acidentes, no entanto, quando estes acontecem, a ajuda das unidades médicas demora algum tempo a chegar. Sabe-se que nestas situações, qualquer segundo pode fazer a diferença. Este é o problema que o autor deseja resolver. Na presente dissertação, o autor pretende demonstrar como desenvolveu um sistema para motociclos com a capacidade de reconhecer um acidente, enviando um alerta (SMS) com a informação do local da ocorrência (GPS). Este sistema foi preparado para operar em locais isolados com pouco ou nenhum tráfego rodoviário. Implementou-se no referido sistema uma tecnologia sem fios e fiabilizou-se um método capaz de ser utilizado em diversos modelos de motociclos. Procedeu-se à realização de interfaces que permitem monitorizar e possibilitar o reconhecimento da informação sobre o condutor e sobre o acidente, em tempo real.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Vias de Comunicação e Transportes
Resumo:
El vertiginoso crecimiento de los centros urbanos, las tecnologías emergentes y la demanda de nuevos servicios por parte de la población plantea encaminar esfuerzos hacia el desarrollo de las ciudades inteligentes. Éste concepto ha tomado fuerza entre los sectores político, económico, social, académico, ambiental y civil; de forma paralela, se han generado iniciativas que conducen hacia la integración de la infraestructura, la tecnología y los servicios para los ciudadanos. En éste contexto, una de las problemáticas con mayor impacto en la sociedad es la seguridad vial. Es necesario contar con mecanismos que disminuyan la accidentalidad, mejoren la atención a incidentes, optimicen la movilidad urbana y planeación municipal, ayuden a reducir el consumo de combustible y la emisión de gases de efecto de invernadero, así como ofrecer información dinámica y efectiva a los viajeros. En este artículo se describen dos (2) enfoques que contribuyen de manera eficiente dicho problema: los videojuegos como juegos serios y los sistemas de transporte inteligente. Ambos enfoques están encaminados a evitar colisiones y su diseño e implementación requieren componentes altamente tecnológicos (e.g. sistemas telemáticos e informáticos, inteligencia artificial, procesamiento de imágenes y modelado 3D).
Resumo:
By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment.
Resumo:
Advanced Driver Assistance Systems (ADAS) are proving to have huge potential in road safety, comfort, and efficiency. In recent years, car manufacturers have equipped their high-end vehicles with Level 2 ADAS, which are, according to SAE International, systems that combine both longitudinal and lateral active motion control. These automated driving features, while only available in highway scenarios, appear to be very promising towards the introduction of hands-free driving. However, as they rely only on an on-board sensor suite, their continuative operation may be affected by the current environmental conditions: this prevents certain functionalities such as the automated lane change, other than requiring the driver to keep constantly the hands on the steering wheel. The enabling factor for hands-free highway driving proposed by Mobileye is the integration of high-definition maps, thus leading to the so-called Level 2+. This thesis was carried out during an internship in Maserati's Virtual Engineering team. The activity consisted of the design of an L2+ Highway Assist System following the Rapid Control Prototyping approach, starting from the definition of the requirements up to the real-time implementation and testing on a simulator of the brand new compact SUV Maserati Grecale. The objective was to enhance the current Level 2 highway driving assistance system with hands-free driving capability; for this purpose an Autonomous Lane Change functionality has been designed, proposing a Model Predictive Control-based decision-maker, in charge of assessing both the feasibility and convenience of performing a lane-change maneuver. The result is a Highway Assist System capable of driving the vehicle in a traffic scenario safely and efficiently, never requiring driver intervention.
1° level of automation: the effectiveness of adaptive cruise control on driving and visual behaviour
Resumo:
The research activities have allowed the analysis of the driver assistance systems, called Advanced Driver Assistance Systems (ADAS) in relation to road safety. The study is structured according to several evaluation steps, related to definite on-site tests that have been carried out with different samples of users, according to their driving experience with the ACC. The evaluation steps concern: •The testing mode and the choice of suitable instrumentation to detect the driver’s behaviour in relation to the ACC. •The analysis modes and outputs to be obtained, i.e.: - Distribution of attention and inattention; - Mental workload; - The Perception-Reaction Time (PRT), the Time To Collision (TTC) and the Time Headway (TH). The main purpose is to assess the interaction between vehicle drivers and ADAS, highlighting the inattention and variation of the workloads they induce regarding the driving task. The research project considered the use of a system for monitoring visual behavior (ASL Mobile Eye-XG - ME), a powerful GPS that allowed to record the kinematic data of the vehicle (Racelogic Video V-BOX) and a tool for reading brain activity (Electroencephalographic System - EEG). Just during the analytical phase, a second and important research objective was born: the creation of a graphical interface that would allow exceeding the frame count limit, making faster and more effective the labeling of the driver’s points of view. The results show a complete and exhaustive picture of the vehicle-driver interaction. It has been possible to highlight the main sources of criticalities related to the user and the vehicle, in order to concretely reduce the accident rate. In addition, the use of mathematical-computational methodologies for the analysis of experimental data has allowed the optimization and verification of analytical processes with neural networks that have made an effective comparison between the manual and automatic methodology.
Resumo:
Urban health and well-being are becoming current issues of modern cities due to local climate change and environmental noise. The Urban Heat Island and the Urban Noise Island have a direct impact on the economic, social, and environmental aspects of urban life, negatively affecting the well-being of worldwide citizens. The present research is focused on the study of innovative materials employed in the production of wearing course mixtures aiming to mitigate these phenomena. In particular, a synthetic transparent binder substituting bitumen and recycled aggregates produced from construction and demolition waste. Four mixtures were analysed. Among them, Mix 1 and Mix 2 are conventional wearing courses. The first is exclusively made of natural aggregates, while the second is constituted of 45 % of recycled aggregates (RA). Mix 3 and Mix 4 are draining wearing courses and, in this case, Mix 4 was produced by using 55 % of RA. Laboratory tests were required to fully characterize all the produced samples, allowing a proper comparison of results. Overall, all the mixtures studied provide prominent results suggesting potential applications of these innovative wearing courses in cycle lanes, historical centres, plazas, and parking lots. Among the conventional mixtures, Mix 2 is the most likely to assure the best performance in terms of road safety, efficiency, and durability while as far as the draining mixtures are concerned, Mix 4 is preferable due to its high content of recycled aggregates.
Resumo:
Aim: Children with cerebral palsy (CP) are regularly confronted with physical constraints during locomotion. Because abnormalities in motor control are often related to perceptual deficits, the aim of this study was to find out whether children with CP were able to walk across a road as safely as their non-handicapped peers. Method: Ten children with CP and 10 non-handicapped children aged 4-14 y were asked to cross a simulated road if they felt the situation was safe. Results: With respect to safety and accuracy of crossings, the behaviour of children with CP was comparable with that of non-handicapped children. However, a closer examination of children's individual crossing behaviour showed considerable differences within the CP group. In contrast to children with damage to the left hemisphere, children with damage to the right hemisphere made unsafe decisions and did not compensate for them by increasing walking speed.Conclusion: the differences in unsafe behaviour and in the ability to compensate for it within the group of children with CP might be related to damage to specific regions of the brain that are involved in the processing of spatial or temporal information.
Resumo:
The purpose of this FAL Bulletin is to provide a comprehensive analysis of safety and security in road freight operations.