964 resultados para rice-wheat rotation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

? Arbuscular mycorrhizal fungi colonize the roots of most monocotyledons and dicotyledons despite their different root architecture and cell patterning. Among the cereal hosts of arbuscular mycorrhizal fungi, Oryza sativa (rice) possesses a peculiar root system composed of three different types of roots: crown roots; large lateral roots; and fine lateral roots. Characteristic is the constitutive formation of aerenchyma in crown roots and large lateral roots and the absence of cortex from fine lateral roots. Here, we assessed the distribution of colonization by Glomus intraradices within this root system and determined its effect on root system architecture. ? Large lateral roots are preferentially colonized, and fine lateral roots are immune to arbuscular mycorrhizal colonization. Fungal preference for large lateral roots also occurred in sym mutants that block colonization of the root beyond rhizodermal penetration. ? Initiation of large lateral roots is significantly induced by G. intraradices colonization and does not require a functional common symbiosis signaling pathway from which some components are known to be needed for symbiosis-mediated lateral root induction in Medicago truncatula. ? Our results suggest variation of symbiotic properties among the different rice root-types and induction of the preferred tissue by arbuscular mycorrhizal fungi. Furthermore, signaling for arbuscular mycorrhizal-elicited alterations of the root system differs between rice and M. truncatula.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some bacteria have the capacity to reduce incidence and severity of plant diseases either by inhibiting the pathogen or by modulating the resistance response of the plant. Plants dispose of different resistance mechanisms that are influenced by the biotic and abiotic environment. The present experiments explored the effects of biocontrol strains of Pseudomonas fluorescens on the resistance of wheat varieties against brown rust disease caused by Puccinia triticina. Root inoculation with biocontrol pseudomonads reduced the disease severity on the leaves. The plant response depended on the genotype of both the microbes and the wheat varieties, suggesting a straight interaction at the molecular level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The species x location interaction was of great importance in explaining the behaviour of genetic material. The study presented here shows, for the first time, the performance, under field conditions of the new tritordeum species, compared to wheat and triticale in a wide range of Mediterranean countries (Spain, Lebanon and Tunisia). The results obtained revealed that despite the diversity of environmental conditions, the main differences in yield were due to genotypes, especially to differences between species. The multi-local study with different growth conditions revealed important information about the water availability effect on yield. In the lowest yielding environments (Tunisia rainfed), Tritordeum and triticale yields were equivalent. However under better growth conditions (Spain), tritordeum yield was shown to be lower than wheat and triticale. Interestingly, when water limitation was extended during the pre-anthesis period, differences in tritordeum versus wheat-triticale yield rate were larger than when water stress occurred during anthesis. These variations were explained by the fact that kernel weight has been found as the limiting factor for yield determination in tritordeum, and a delay in the anthesis date may have been the cause for the low kernel weight and low yield under Mediterranean drought conditions. Such differences in yield between tritordeum and wheat or triticale could be explained by the fact that tritordeum is a relatively new species and far fewer resources have been devoted to its improvement when compared to wheat and triticale. Our results suggest that breeding efforts should be directed to an earlier anthesis date and a longer grain filling period. tritordeum proved to have possibilities to be grown under drought environments as a new crop, since its performance was quite close to wheat and triticale. Besides, it has qualitative added values that may improve farmers' income per unit land.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteria released in large numbers for biocontrol or bioremediation purposes might exchange genes with other microorganisms. Two model systems were designed to investigate the likelihood of such an exchange and some factors which govern the conjugative exchange of chromosomal genes between root-colonizing pseudomonads in the rhizosphere of wheat. The first model consisted of the biocontrol strain CHA0 of Pseudomonas fluorescens and transposon-facilitated recombination (Tfr). A conjugative IncP plasmid loaded with transposon Tn5, in a CHA0 derivative carrying a chromosomal Tn5 insertion, promoted chromosome transfer to auxotrophic CHA0 recipients in vitro. A chromosomal marker (pro) was transferred at a frequency of about 10(sup-6) per donor on wheat roots under gnotobiotic conditions, provided that the Tfr donor and recipient populations each contained 10(sup6) to 10(sup7) CFU per g of root. In contrast, no conjugative gene transfer was detected in soil, illustrating that the root surface stimulates conjugation. The second model system was based on the genetically well-characterized strain PAO of Pseudomonas aeruginosa and the chromosome mobilizing IncP plasmid R68.45. Although originally isolated from a human wound, strain PAO1 was found to be an excellent root colonizer, even under natural, nonsterile conditions. Matings between an auxotrophic R68.45 donor and auxotrophic recipients produced prototrophic chromosomal recombinants at 10(sup-4) to 10(sup-5) per donor on wheat roots in artificial soil under gnotobiotic conditions and at about 10(sup-6) per donor on wheat roots in natural, nonsterile soil microcosms after 2 weeks of incubation. The frequencies of chromosomal recombinants were as high as or higher than the frequencies of R68.45 transconjugants, reflecting mainly the selective growth advantage of the prototrophic recombinants over the auxotrophic parental strains in the rhizosphere. Although under field conditions the formation of chromosomal recombinants is expected to be reduced by several factors, we conclude that chromosomal genes, whether present naturally or introduced by genetic modification, may be transmissible between rhizosphere bacteria.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of plants, improving plant nutrition and diversity. Evidence exists suggesting that AMF contain populations of genetically different nucleotypes coexisting in a common cytoplasm. This potentially has two important consequences for their genetics. First, by random distribution of nuclei at spore formation, new offspring of an AMF could receive different complements of nucleotypes compared to the parent or siblings-we consider this as segregation. Second, genetic exchange between AMF would allow the mixing of nuclei, altering nucleotype diversity in new spores. Because segregation was assumed not to occur and genetic exchange has only recently been demonstrated, no attempts have been made to test whether this affects the symbiosis with plants. Here, we show that segregation occurs in the AMF Glomus intraradices and can enhance the growth of rice up to five times, even though neither parental nor crossed AMF lines induced a positive growth response. This process also resulted in an alteration of symbiosis-specific gene transcription in rice. Our results demonstrate that manipulation of AMF genetics has important consequences for the symbiotic effects on plants and could be used to enhance the growth of globally important crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a significant potential to improve the plant-beneficial effects of root-colonizing pseudomonads by breeding wheat genotypes with a greater capacity to sustain interactions with these bacteria. However, the interaction between pseudomonads and crop plants at the cultivar level, as well as the conditions which favor the accumulation of beneficial microorganisms in the wheat rhizosphere, is largely unknown. Therefore, we characterized the three Swiss winter wheat (Triticum aestivum) cultivars Arina, Zinal, and Cimetta for their ability to accumulate naturally occurring plant-beneficial pseudomonads in the rhizosphere. Cultivar performance was measured also by the ability to select for specific genotypes of 2,4-diacetylphloroglucinol (DAPG) producers in two different soils. Cultivar-specific differences were found; however, these were strongly influenced by the soil type. Denaturing gradient gel electrophoresis (DGGE) analysis of fragments of the DAPG biosynthetic gene phlD amplified from natural Pseudomonas rhizosphere populations revealed that phlD diversity substantially varied between the two soils and that there was a cultivar-specific accumulation of certain phlD genotypes in one soil but not in the other. Furthermore, the three cultivars were tested for their ability to benefit from Pseudomonas inoculants. Interestingly, Arina, which was best protected against Pythium ultimum infection by inoculation with Pseudomonas fluorescens biocontrol strain CHA0, was the cultivar which profited the least from the bacterial inoculant in terms of plant growth promotion in the absence of the pathogen. Knowledge gained of the interactions between wheat cultivars, beneficial pseudomonads, and soil types allows us to optimize cultivar-soil combinations for the promotion of growth through beneficial pseudomonads. Additionally, this information can be implemented by breeders into a new and unique breeding strategy for low-input and organic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To produce agronomically competitive rice with nutritionally superior, environmentally safe phytic acid (PA) levels, hairpin RNA (hpRNA)- and artificial microRNA (amiRNA)-mediated gene silencing approaches were explored to reduce both myo-inositol kinase gene (OsMIK) expression and PA accumulation in rice seeds. hpRNA and amiRNA sequences targeted to OsMIK (hpMIK and amiMIK), under the control of a rice Ole18 promoter, were transformed into the rice cultivar Nippon-bare. Fourteen and 21 independent transgenic events were identified containing the hpMIK and amiMIK constructs, respectively, from which five stable homozygous transgenic lines of each were developed together with their null siblings. Southern blotting demonstrated transgene integration into the genome and quantitative real-time PCR showed that gene silencing was restricted to seeds. OsMIK transcripts were significantly reduced in both transgenic amiMIK and hpMIK seeds, which had PA levels reduced by 14.9-50.2 and 38.1-50.7 %, respectively, compared with their respective null siblings. There were no systematic significant differences in agronomic traits between the transgenic lines and their non-transgenic siblings, and no correlation between seed PA contents and decreased rates of seed germination and seedling emergence. The results of the present study suggest that Ole 18-driven OsMIK silencing via hpRNA and amiRNA could be an effective way to develop agronomically competitive low phytic acid rice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of urea on the oviposition behaviour of culicine vectors of Japanese encephalitis was studied in rice fields. Gravid females had a strong preference for oviposition in urea treated areas in rice fields, while no such preference was exhibited in untreated areas. The egg laying declined in the area where urea treated water surface had a mechanical barrier, which allowed volatile fractions to escape, but prevented contact with the water. Urea was shown to act as an oviposition attractant/stimulant for Culex tritaeniorhynchus, but its role was not clear for Cx. vishnui, as the number of egg rafts obtained for the latter species was low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glomalean fungi induce and colonize symbiotic tissue called arbuscular mycorrhiza on the roots of most land plants. Other fungi also colonize plants but cause disease not symbiosis. Whole-transcriptome analysis using a custom-designed Affymetrix Gene-Chip and confirmation with real-time RT-PCR revealed 224 genes affected during arbuscular mycorrhizal symbiosis. We compared these transcription profiles with those from rice roots that were colonized by pathogens (Magnaporthe grisea and Fusarium moniliforme). Over 40% of genes showed differential regulation caused by both the symbiotic and at least one of the pathogenic interactions. A set of genes was similarly expressed in all three associations, revealing a conserved response to fungal colonization. The responses that were shared between pathogen and symbiont infection may play a role in compatibility. Likewise, the responses that are different may cause disease. Some of the genes that respond to mycorrhizal colonization may be involved in the uptake of phosphate. Indeed, phosphate addition mimicked the effect of mycorrhiza on 8% of the tested genes. We found that 34% of the mycorrhiza-associated rice genes were also associated with mycorrhiza in dicots, revealing a conserved pattern of response between the two angiosperm classes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Both systolic and diastolic dysfunction have been observed in patients with anterolateral myocardial infarction. Diastolic dysfunction is related to disturbances in relaxation and diastolic filling. OBJECTIVE: To analyse cardiac rotation, regional shortening and diastolic relaxation in patients with anterolateral infarction. METHODS: Cardiac rotation and relaxation in controls and patients with chronic anterolateral infarction were assessed by myocardial tagging. Myocardial tagging is based on magnetic resonance imaging and allows us to label specific myocardial regions for imaging cardiac motion (rotation, translation and radial displacement). A rectangular grid was placed on the myocardium (basal, equatorial and apical short-axis plane) of each of 18 patients with chronic anterolateral infarction and 13 controls. Cardiac rotation, change in area and shortening of circumference were determined in each case. RESULTS: The left ventricle in controls performs a systolic wringing motion with a clockwise rotation at the base and a counterclockwise rotation at the apex when viewed from the apex. During relaxation a rotational motion in the opposite direction (namely untwisting) can be observed. In patients with anterolateral infarction, there is less systolic rotation at the apex and diastolic untwisting is delayed and prolonged in comparison with controls. In the presence of a left ventricular aneurysm (n = 4) apical rotation is completely lost. There is less shortening of circumference in infarcted and remote regions. CONCLUSIONS: The wringing motion of the myocardium might be an important mechanism involved in maintaining normal cardiac function with minimal expenditure of energy. This mechanism no longer operates in patients with left ventricular aneurysms and operates significantly less than normal in those with anterolateral hypokinaesia. Diastolic untwisting is significantly delayed and prolonged in patients with anterolateral infarction, which could explain the occurrence of diastolic dysfunction in these patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pi acquisition of crops via arbuscular mycorrhizal (AM) symbiosis is becoming increasingly important due to limited high-grade rock Pi reserves and a demand for environmentally sustainable agriculture. Here, we show that 70% of the overall Pi acquired by rice (Oryza sativa) is delivered via the symbiotic route. To better understand this pathway, we combined genetic, molecular, and physiological approaches to determine the specific functions of two symbiosis-specific members of the PHOSPHATE TRANSPORTER1 (PHT1) gene family from rice, ORYsa;PHT1;11 (PT11) and ORYsa;PHT1;13 (PT13). The PT11 lineage of proteins from mono- and dicotyledons is most closely related to homologs from the ancient moss, indicating an early evolutionary origin. By contrast, PT13 arose in the Poaceae, suggesting that grasses acquired a particular strategy for the acquisition of symbiotic Pi. Surprisingly, mutations in either PT11 or PT13 affected the development of the symbiosis, demonstrating that both genes are important for AM symbiosis. For symbiotic Pi uptake, however, only PT11 is necessary and sufficient. Consequently, our results demonstrate that mycorrhizal rice depends on the AM symbiosis to satisfy its Pi demands, which is mediated by a single functional Pi transporter, PT11.