955 resultados para reuse of waste
Resumo:
The International Space Station (ISS) requires a substantial amount of potable water for use by the crew. The economic and logistic limitations of transporting the vast amount of water required onboard the ISS necessitate onboard recovery and reuse of the aqueous waste streams. Various treatment technologies are employed within the ISS water processor to render the waste water potable, including filtration, ion exchange, adsorption, and catalytic wet oxidation. The ion exchange resins and adsorption media are combined in multifiltration beds for removal of ionic and organic compounds. A mathematical model (MFBMODEL™) designed to predict the performance of a multifiltration (MF) bed was developed. MFBMODEL consists of ion exchange models for describing the behavior of the different resin types in a MF bed (e.g., mixed bed, strong acid cation, strong base anion, and weak base anion exchange resins) and an adsorption model capable of predicting the performance of the adsorbents in a MF bed. Multicomponent ion exchange ii equilibrium models that incorporate the water formation reaction, electroneutrality condition, and degree of ionization of weak acids and bases for mixed bed, strong acid cation, strong base anion, and weak base anion exchange resins were developed and verified. The equilibrium models developed use a tanks-inseries approach that allows for consideration of variable influent concentrations. The adsorption modeling approach was developed in related studies and application within the MFBMODEL framework was demonstrated in the Appendix to this study. MFBMODEL consists of a graphical user interface programmed in Visual Basic and Fortran computational routines. This dissertation shows MF bed modeling results in which the model is verified for a surrogate of the ISS waste shower and handwash stream. In addition, a multicomponent ion exchange model that incorporates mass transfer effects was developed, which is capable of describing the performance of strong acid cation (SAC) and strong base anion (SBA) exchange resins, but not including reaction effects. This dissertation presents results showing the mass transfer model's capability to predict the performance of binary and multicomponent column data for SAC and SBA exchange resins. The ion exchange equilibrium and mass transfer models developed in this study are also applicable to terrestrial water treatment systems. They could be applied for removal of cations and anions from groundwater (e.g., hardness, nitrate, perchlorate) and from industrial process waters (e.g. boiler water, ultrapure water in the semiconductor industry).
Resumo:
When the offshore oil and gas supplies exhaust, offshore platforms must be decommissioned and removed. The present thesis highlights the importance of evaluating the possibility of reuse of decommissioned offshore jacket platforms for offshore wind energy. In order to shift to the new structure, the topside must be removed from the substructure and a wind turbine can be installed in its place. The feasibility of this project was investigated using a finite element analysis software called Sesam. To study fatigue life in offshore structures, an exhaustive review of the background and state of the art was done. A finite element model was created by the means of Sesam and two different fatigue analysis approaches were applied and compared. In the end, an analysis methodology is suggested for the structural fatigue analysis of offshore wind turbine structures based on international standards, addressing the industry’s need to account for the combined effect of wind and hydrodynamic loads in these type of structures.
Resumo:
Nowadays, an important world’s population growth forecast establish that an increase of 2 billion people is expected by 2050. (UN,2019). This increment of people worldwide involves more humans, as well as growth of the demand for the construction of new residential, institutional, industrial, and infrastructural areas, prompting to a higher consumption of natural resources as required for construction materials. In addition, an effect of this population growth is the production and accumulation of waste causing a serious environmental and economic issue around the world. As an alternative to just producing more waste at the final stage of a building, house, road, among other concrete-based structures, adequate techniques must be applied for recycling and reusing these potential materials. The main priority of the thesis is to foment and evaluate the sustainable construction work leading to environmental-friendly actions that promote the reuse and recycling of construction waste, focusing on the use of construction recycled construction materials as an alternative for sub-base and base of road structure application. This thesis is committed to the analysis of the several laboratory tests carried out for achieving the physical-mechanical properties of the studied materials (recycled concrete aggregates + reclaimed asphalt pavement (RCA+RAP) and stabilized crushed sleepers). All these tests have been carried out in the Laboratory of Roads from the University of Bologna and in the experimental site in CAR srl., at Imola. The results are reported in tables, graphs, and are discussed. The mechanical properties values obtained from the laboratory tests are analysed and compared with standard values declared in the Italian and European normative for roads construction and to the results obtained from in-situ tests in the experimentation field (CAR srl in Imola) with the same materials. This to analyse the performance of them under natural conditions.
Resumo:
Yeast flocculation (Saccharomyces cerevisiae) is one of the most important problems in fuel ethanol production. Yeast flocculation causes operational difficulties and increase in the ethanol cost. Proteolytic enzymes can solve this problem since it does not depend on these changes. The recycling of soluble papain and the immobilization of this enzyme on chitin or chitosan were studied. Some cross-linking agents were evaluated in the action of proteolytic activity of papain. The glutaraldehyde (0.1-10% w·v(-1)), polyethyleneimine (0.5% v·v(-1)), and tripolyphosphate (1-10% w·v(-1)) inactivated the enzyme in this range, respectively. Glutaraldehyde inhibited all treatments of papain immobilization. The chitosan cross-linked with TPP in 5 h of reaction showed the yield of active immobilized enzyme of 15.7% and 6.07% in chitosan treated with 0.1% PEI. Although these immobilizations have been possible, these levels have not been enough to cause deflocculation of yeast cells. Free enzyme was efficient for yeast deflocculation in dosages of 3 to 4 g·L(-1). Recycling of soluble papain by centrifugation was effective for 14 cycles with yeast suspension in time perfectly compatible to industrial conditions. The reuse of proteases applied after yeast suspension by additional yeast centrifugation could be an alternative to cost reduction of these enzymes.
Resumo:
Biomass Refinery is a sequential of eleven thermochemical processes and one biological process with two initial basic treatments: prehydrolysis for lignocellulosics and low temperature conversion for biomass with medium-to-high content of lipids and proteins. The other ten processes are: effluent treatment plant, furfural plant, biodiesel plant, cellulignin dryer, calcination, fluidized bed boiler, authotermal reforming of cellulignin for syngas production, combined cycle of two-stroke low-speed engine or syngas turbine with fluidized bed boiler heat recovery, GTL technologies and ethanol from cellulose, prehydrolysate and syngas. Any kind of biomass such as wood, agricultural residues, municipal solid waste, seeds, cakes, sludges, excrements and used tires can be processed at the Biomass Refinery. Twelve basic products are generated such as cellulignin, animal feed, electric energy, fuels (ethanol, crude oil, biodiesel, char), petrochemical substitutes, some materials (ash, gypsum, fertilizers, silica, carbon black) and hydrogen. The technology is clean with recovery of energy and reuse of water, acid and effluents. Based on a holistic integration of various disciplines Biomass Refinery maximizes the simultaneous production of food, electric energy, liquid fuels and chemical products and some materials, achieving a competitive position with conventional and fossil fuel technologies, as well as payment capacity for biomass production. Biomass Refinery has a technical economical capability to complement the depletion of the conventional petroleum sources and to capture its GHGs resulting a biomass + petroleum ""green"" combination.
Resumo:
The determination of uric acid in urine shows clinical importance, once it can be related to human organism dysfunctions, such as gout. An analytical procedure employing a multicommuted flow system was developed for the determination of uric acid in urine samples. Cu(II) ions are reduced by uric acid to Cu(I) that can be quantified by spectrophotometry in the presence of 2,2`-biquinoline 4,4`-dicarboxylic acid (BCA). The analytical response was linear between 10 and 100 mu mol L(-1) uric acid with a detection limit of 3.0 mu mol L(-1) (99.7% confidence level). Coefficient of variation of 1.2% and sampling rate of 150 determinations per hour were achieved. Per determination, 32 mu g of CuSO(4) and 200 mu g of BCA were consumed, generating 2.0 mL of waste. Recoveries from 91 to 112% were estimated and the results for 7 urine samples agreed with those obtained by the commercially available enzymatic kit for determination of uric acid. The procedure required 100-fold dilution of urine samples, minimizing sample consumption and interfering effects. In order to avoid the manual dilution step, on-line sample dilution was achieved by a simple system reconfiguration attaining a sampling rate of 95 h(-1). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The characteristics of municipal solid waste (MSW) play a key role in many aspects of waste disposal facilities and landfills. Because most of a landfill is made up of MSW, the overall stability of the landfill slopes are governed by the strength parameters and physical properties of the MSW. These parameters are also important in interactions involving the waste body and the landfill structures: cover liner, leachate and gas collection systems. On the other hand, the composition of the waste, which affects the geotechnical behavior of the MSW, is dependent on a variety of factors such as climate, disposal technology, the culture and habits of the local community. It is therefore essential that the design and stability evaluations of landfills in each region be performed based on the local conditions and the geotechnical characteristic of the MSW. The Bandeirantes Landfill, BL, in Sao Paulo and the Metropolitan Center Landfill, MCL, in Salvador, are among the biggest landfills in Brazil. These two disposal facilities have been used for the development of research involving waste mechanics in recent years. Considerable work has been made in the laboratory and in the field to evaluate parameters such as water and organic contents, composition, permeability, and shear strength. This paper shows and analyzes the results of tests performed on these two landfills. The authors believe that these results could be a good reference for certain aspects and geotechnical properties of MSW materials in countries with similar conditions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Electric arc furnace (EAF) dust is a waste generated in the EAF during the steel production process. Among different wastes, EAF dust represents one of the most hazardous, since it contains heavy metals such as Zn, Fe, Cr, Cd and Pb. The goal of the present work is to characterise the waste through chemical analysis, particle size distribution, X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive spectroscopy detection and thermal analysis. The waste sample is composed essentially of spherical particles and has a very small particle size and the majority of the identified elements were Fe, Zn, Ca, Cr, Mn, K and Si. The XRD has presented compounds such as ZnO, ZnFe2O4, Fe2O3, MnO, SiO2, FeFe2O4 and MnAl2O4. According to the thermal analysis results, up to 1000 degrees C the total weight loss was similar to 5%. The results of waste characterisation are very important to these further investigations.
Resumo:
Wastewater control at storage terminals of liquid chemical products in bulk is very difficult because of the variety of products handled in the facilities generating effluents of variable composition. The main objective of this work was to verify if the Vibrio fischeri acute toxicity test could be routinely included in the wastewater management of those facilities along with physical and chemical analysis in order to evaluate and improve the quality of the generated effluents. The study was performed in two phases before and after the implementation of better operational practices/treatment technologies. Chemical oxygen demand (COD) and toxicity of treated effluents did not correlate showing that effluents with low COD contain toxic substances and non-biodegradable organic matter, which may be not degraded when discharged into the aquatic environment. Segregation of influents or pre-treatment based on toxicity results and biodegradability index were implemented in the facilities generating significant improvements in the quality of final effluents with reduction of Biochemical oxygen demand (BOD) and toxicity. The integration of physical and chemical analysis with the V.fischeri toxicity test turned out to be an excellent tool for wastewater management in chemical terminals allowing rapid decision making for pollution control and prevention measures. Reuse of rain water was also proposed and when implemented by the facilities resulted in economical and environmental benefits. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Eukaryotic phenotypic diversity arises from multitasking of a core proteome of limited size. Multitasking is routine in computers, as well as in other sophisticated information systems, and requires multiple inputs and outputs to control and integrate network activity. Higher eukaryotes have a mosaic gene structure with a dual output, mRNA (protein-coding) sequences and introns, which are released from the pre-mRNA by posttranscriptional processing. Introns have been enormously successful as a class of sequences and comprise up to 95% of the primary transcripts of protein-coding genes in mammals. In addition, many other transcripts (perhaps more than half) do not encode proteins at all, but appear both to be developmentally regulated and to have genetic function. We suggest that these RNAs (eRNAs) have evolved to function as endogenous network control molecules which enable direct gene-gene communication and multitasking of eukaryotic genomes. Analysis of a range of complex genetic phenomena in which RNA is involved or implicated, including co-suppression, transgene silencing, RNA interference, imprinting, methylation, and transvection, suggests that a higher-order regulatory system based on RNA signals operates in the higher eukaryotes and involves chromatin remodeling as well as other RNA-DNA, RNA-RNA, and RNA-protein interactions. The evolution of densely connected gene networks would be expected to result in a relatively stable core proteome due to the multiple reuse of components, implying,that cellular differentiation and phenotypic variation in the higher eukaryotes results primarily from variation in the control architecture. Thus, network integration and multitasking using trans-acting RNA molecules produced in parallel with protein-coding sequences may underpin both the evolution of developmentally sophisticated multicellular organisms and the rapid expansion of phenotypic complexity into uncontested environments such as those initiated in the Cambrian radiation and those seen after major extinction events.
Resumo:
Along with material characteristics and geometry, the climate in which a mine is located can have a dramatic effect on the appropriate options for rehabilitation. The paper outlines the setting, mining, milling and waste disposal at Kidston Gold Mine's open pit operations in the semi-arid climate of North Queensland, Australia, before focusing on the engineering aspects of the rehabilitation of Kidston. The mine took a holistic and proactive approach to rehabilitation, and was prepared to demonstrate a number of innovative approaches, which are described in the paper. Engineering issues that had to be addressed included the geotechnical stability and deformation of waste rock dumps, including a 240 m high in-pit dump: the construction and performance monitoring of a “store and release” cover over potentially acid forming mineralised waste rock; erosion from the side slopes of the waste rock dumps; the in-pit co-disposal of waste rock and thickened tailings; the geotechnical stability of the tailings dam wall; the potential for erosion of bare tailings; the water balance of the tailings dam; direct revegetation of the tailings; and the pit hydrology. The rehabilitation of the mine represents an important benchmark in mine site rehabilitation best practice, from which lessons applicable worldwide can be shared.
Resumo:
The Agricultural Production Systems Simulator (APSIM) is a modular modelling framework that has been developed by the Agricultural Production Systems Research Unit in Australia. APSIM was developed to simulate biophysical process in farming systems, in particular where there is interest in the economic and ecological outcomes of management practice in the face of climatic risk. The paper outlines APSIM's structure and provides details of the concepts behind the different plant, soil and management modules. These modules include a diverse range of crops, pastures and trees, soil processes including water balance, N and P transformations, soil pH, erosion and a full range of management controls. Reports of APSIM testing in a diverse range of systems and environments are summarised. An example of model performance in a long-term cropping systems trial is provided. APSIM has been used in a broad range of applications, including support for on-farm decision making, farming systems design for production or resource management objectives, assessment of the value of seasonal climate forecasting, analysis of supply chain issues in agribusiness activities, development of waste management guidelines, risk assessment for government policy making and as a guide to research and education activity. An extensive citation list for these model testing and application studies is provided. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
A actividade de construção civil é responsável por grande parte dos resíduos produzidos, nomeadamente em obras de construção, demolições de edifícios ou derrocadas, operações de manutenção, restauro, remodelação e reabilitação de construções. A gestão dos resíduos deste sector, abreviadamente designada por resíduos de construção e demolição (RCD), passou a estar regulada, através de regime de operações de gestão de RCD. Este diploma, define entre outras, a responsabilidade dos vários intervenientes no processo de gestão de resíduos, fase de projecto, execução, transporte e recepção. Com a evolução das preocupações ambientais da população e maior envolvência das empresas na contribuição para uma gestão integrada de resíduos, existe um crescente desenvolvimento de estudos no âmbito de caracterização de quantidades e tipos de resíduos produzidos pelo sector. Neste contexto, e por ser importante uma economia integrada com a gestão de resíduos, os principais desafios passam pelo planeamento e preparação de Obra desde da fase de projecto à fase de execução, com vista à prevenção, redução, reutilização e valorização dos RCD. O presente trabalho pretende contribuir para este desenvolvimento do sector, mais concretamente na obtenção de indicadores de resíduos de construção (RC), resíduos de demolição (RD) e caracterização da tipologia destes. Para tanto, foi feita uma avaliação dos estudos desenvolvidos no âmbito de caracterização dos tipos de resíduos e indicadores de RC e RD, como método comparativo. Os indicadores deste estudo foram obtidos com base na análise de dados de casos de estudo, no caso concreto RC, de obras de estruturas, e RD de edifícios com execução de demolição selectiva. Na parte final deste estudo apresentam-se algumas conclusões e recomendações.
Resumo:
Over the centuries there has been a growing trend of societies and it is possible to verify their economic growth. This growth has provided an increased pressure on natural resources, often over-reaching the boundaries of each country, which has called into question the level of environmental sustainability in different countries. Sustainability is understood as a complex concept involving ecological, social, economic dimensions and temporal urban processes. Therefore, Firmino (2009) suggests that the ecological footprint (EF) allows people to establish dependency relations between human activities and the natural resources required for such activities and for the absorption of waste generated. According to Bergh & Verbruggen (1999) the EF is an objective, impartial and one-dimensional indicator that enables people to assess the sustainability. The Superior Schools have a crucial role in building the vision of a sustainable future as a reality, because in transmitting values and environmental principles to his students, are providing that they, in exercising his professional activity, make decisions weighing the environmental values. This ensures improved quality of life. The present study aims to determine the level of environmental sustainability of the Academic Community of Lisbon College of Health Technology (ESTeSL), by calculating the EF, and describe whether a relation between Footprint and various socio-demographic characteristics of the subjects.
Resumo:
A existência de estações de tratamentos de águas residuais (ETAR) é, nos dias de hoje, fundamental na medida em que permite, reduzir a poluição ambiental associada às águas e, também, a reutilização da água tratada para diversos fins. A constante necessidade de cumprir os limites de descargas nos meios recetores conduziu a um melhoramento nas técnicas e processos de tratamento de efluentes, nomeadamente, nos processos biológicos. O processo por lamas ativadas é um processo amplamente utilizado para a remoção de poluentes orgânicos presentes nas águas residuais, pelo que um estudo mais intensivo sobre estes tratamentos resultou na publicação de uma série de conceitos e pressupostos, através de modelos numéricos. A modelação numérica de processos de tratamento de águas residuais e a utilização de ferramentas de simulação numérica têm sido largamente utilizadas, a nível mundial, por exemplo em investigação, desenvolvimento de processos, atividade de consultoria e igualmente por entidades reguladoras, na medida em que os auxiliam no planeamento, dimensionamento e análise do comportamento de infraestruturas de tratamento. No presente trabalho, recorreu-se ao software de simulação GPS-X (versão 6.0) para implementar o esquema de tratamento da ETAR de Beirolas. O objetivo deste trabalho é verificar a aplicabilidade de modelos numéricos na simulação de unidades de tratamento de efluentes e avaliar a resposta dos diferentes modelos, assim como a influência na alteração de características das águas afluentes no comportamento dos modelos. Os resultados obtidos permitiram concluir que os modelos numéricos podem ser utilizados para prever a resposta dos sistemas biológicos e as suas perturbações. Conclui-se ainda que o comportamento, dos modelos estudados (ASM1, ASM2d, ASM3 e mantis), é semelhante, contudo deve-se referir que devido à complexidade do modelo e a falta de informação experimental sobre as características do efluente, não permitiram efetuar uma completa caracterização e calibração do caso de estudo, e toda a informação disponível sobre as características físico-químicas da água foram baseadas em estimativas de concentrações de carências de oxigénio e sólidos suspensos.