972 resultados para resting from grazing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pastures containing hay-type and grazing tolerant alfalfa hybrids were grazed in a season-long or complimentary rotational stocking system with Nfertilized smooth bromegrass. The pastures were stocked at a seasonal density of .8 cow-calf pairs per acre for 120 days. Pastures were intensively managed by daily strip-stocking with the assumptions that 50% of live forage was available and daily live dry matter consumption of each cow-calf pair was 3.5% of the cow’s body weight. First-cutting forage was harvested as hay from 40% of pasture acres to remove excess forage growth early in the grazing season. Forage was grazed from the remaining 60% of each pasture for the first 44 days of the experiment and then from the entire pasture thereafter. Live forage yields, estimated by monthly clippings, were greater in May and September on the season-long alfalfa pastures compared with the complementary pastures and on the alfalfa pastures compared with the N-fertilized smooth bromegrass pastures. The proportions of legumes in the live dry matter in pastures with grazing tolerant and hay-type alfalfas in the season-long grazing systems declined by 70% and 50%, respectively, in the 120 day trial. The proportions of legumes in the live dry matter in pastures with grazing tolerant and the hay-type alfalfas in the complementary grazing system declined 60% and 42%, respectively, in the 120 day trial. Cows grazing either alfalfa hybrid by either management system had greater weight gains during the breeding and grazing seasons and greater increases in body condition score prebreeding and during the breeding season than the cows that grazed N-fertilized smooth bromegrass for the entire season. Also, cows grazing either alfalfa in the season-long system had greater breeding season increases in body condition score than cows grazing alfalfa in the complementary system with N-fertilized smooth bromegrass. Daily gains and seasonal gains of calves from cows grazing the alfalfa pastures tended to be greater than those grazing N-fertilized smooth bromegrass. Within alfalfa treatments, calves of cows grazing alfalfa pastures in the season-long system tended to produce more pounds per acre than those of cows grazing alfalfa in the complementary systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To determine environmental, soil, and sward effects at the initiation of cattle grazing in the spring on seasonal (forage accumulated during the grazing season) and cumulative (seasonal + initial forage mass) forage accumulation (FA), 15 commercial cow-calf producers from southern Iowa were selected by historical initial grazing date. At grazing initiation, twelve .25-m2 samples were hand-clipped from each pasture and sward heights (SH) measured with a falling plane meter (4.8 kg/m2) to determine initial forage mass. At each location, soil temperature and load bearing capacity (LBC) were measured and a soil sample was collected to measure pH and moisture, P, and K concentrations. Cumulative degree-days (base=3.85°C) and precipitation at grazing initiation were calculated from NOAA records. At the beginning of each month, at least three grazing exclosures were placed on each grazed pasture to determine monthly FA. SH in each exclosure was recorded, and a .25-m2 forage sample was hand-clipped proximate to each exclosure. At the end of each month, SH was recorded and .25-m2 hand-clipped forage samples from inside exclosures were obtained. In linear regressions, cumulative and seasonal SH increased with greater soil P (r2=.5049 and .5417), soil K (r2=.4675 and .4397), and initial forage mass (r2=.1984 and .2801). Seasonal SH increased with earlier initial grazing dates (r2=.1996) and less accumulated degree-days (r2=.2364). Cumulative and seasonal FA increased with earlier initial grazing dates (r2=.2106 and .3744), lower soil temperatures (r2=.2617 and.2874), and greater soil P (r2=.3489 and .2598). Cumulative FA increased with greater soil K (r2=.4675). In quadratic regressions, cumulative and seasonal SH were correlated to soil P (r2=.6310 and .5310) and soil K (r2=.5095 and.4401). Cumulative and seasonal FA were correlated to degree days (r2=.3630 and.4013) and initial grazing date (r2=.3425 and .4088). Cumulative FA was correlated to soil P (r2=.3539), and seasonal FA was correlated to soil moisture (r2=.3688).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grazing yearling steers is one way to utilize the forages required for participation in the Conservation Reserve Program (CRP) after CRP contracts expire. In 1995, a stocker-steer intensive-rotational grazing study was conducted at the CRP Research and Demonstration Project near Corning, Iowa. A similar study was carried out in 1994. Seventy-five yearling crossbred steers grazed a 65- acre pasture that had been divided into 27 paddocks using electric fencing from May 4, 1995 to September 14, 1995. During this period, the 65-acre pasture system produced 9,975 animal-days of grazing and 11,403 pounds of gain. On a per-acre basis, this translates to 153.5 animal-days of grazing and 175.4 pounds of gain. The stocking rate was constant for the entire 133- day grazing season at 1.15 steers per acre. On May 4, 1995, the beginning of the grazing season, the average weight of the steers was 495.7 pounds. By the end of the grazing trial on September 14, 1995, the average weight of the steers had increased to 647.7 pounds. The average gain per steer during the 133-day grazing period was 152 pounds, and the average daily gain per steer was 1.14 pounds. The average bodyweight of the steers during the entire grazing season was 571.7 pounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two grazing systems were demonstrated on Conservation Reserve Program (CRP) land in southwestern Iowa near Corning in the summers of 1991, 1992, 1993, 1994, and 1995. This report summarizes the 1995 data and compares them to results from the four previous years. The systems, a 13-paddock intensive-rotational grazing system and a 4-paddock more traditional rotation, both established in 1991, are aimed at showing economically sustainable grass alternatives for steeply sloping (9-14% slope), highly erodible land (HEL) once the 10-year CRP ends. In a 147-day grazing season in 1995, nursing crossbred calves with no creep gained 2.36 pounds and 2.38 pounds per day on the 13- and 4-paddock systems, respectively. The rotations were stocked at 1.65 acres per cow-calf pair on the 13-paddock system and 1.72 acres per pair on the 4-paddock system. This produced 210.2 pounds of calf gain per acre on the 13-paddock system and 203.2 pounds of calf gain per acre on the 4- paddock system.. Similar calves gained 2.37 pounds and 2.50 pounds per day for 155 days, yielding a total gain per acre of 222.7 pounds on the 13-paddock system and 224.9 pounds on the 4-paddock system in 1994. Results for 1992 remain the highest from both systems in the five years of grazing, with calf gain per head per day at 2.45 for 155 days netting 241.9 pounds per acre on the 13- paddock system and calf gain per head per day at 2.38 for 154 days on the 4-paddock system yielding 263.6 pounds per acre. Cows maintained both their weight and condition scores in both systems again in 1995. A third system, the 18-paddock intensive-rotational grazing system, was stocked with stocker steers in 1995, and the results are reported in a second article in the 1996 ISU Beef Research Report entitled “Intensive- Rotational Grazing Steers on Highly Erodible Land at the Adams County CRP Project.” Concerning grazing management, paddocks were grazed four, five, or six times in the 13-paddock intensive- rotational grazing system during the 147-day grazing season of 1995. This number of times grazed per paddock was nearly equal to times grazed per paddock in 1994. However, several paddocks were subdivided temporarily to equalize paddock size and increase grazing uniformity. This increased the total number of cattle moves in the 13-paddock system from 78 in 1994 to 109 in 1995. The average length of stay on each paddock or subdivision of a paddock per grazing time was 1 to 2.2 days. This was less than in any of the other four grazing years in this project. The principle of not grazing more than half the standing forage during any one grazing period was closely followed in 1995. All paddocks in the 13-paddock system were also rested approximately the recommended 30 days between each grazing cycle in 1995.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal production, hay production and feeding, and the yields and composition of forage from summer and winter grass-legume pastures and winter corn crop residue fields from a year-round grazing system were compared with those of a conventional system. The year-round grazing system utilized 1.67 acres of smooth bromegrass-orchardgrass-birdsfoot trefoil pasture per cow in the summer, and 1.25 acres of stockpiled tall fescue-red clover pasture per cow, 1.25 acres of stockpiled smooth bromegrass-red clover pasture per cow, and 1.25 acres of corn crop residues per cow during winter for spring- and fall-calving cows and stockers. First-cutting hay was harvested from the tall fescue-red clover and smooth bromegrass-red clover pastures to meet supplemental needs of cows and calves during winter. In the conventional system (called the minimal land system), spring-calving cows grazed smooth bromegrass-orchardgrass-birdsfoot trefoil pastures at 3.33 acres/cow during summer with first cutting hay removed from one-half of these acres. This hay was fed to these cows in a drylot during winter. All summer grazing was done by rotational stocking for both systems, and winter grazing of the corn crop residues and stockpiled forages for pregnant spring-calving cows and lactating fall-calving cows in the year-round system was managed by strip-stocking. Hay was fed to springcalving cows in both systems to maintain a mean body condition score of 5 on a 9-point scale, but was fed to fall-calving cows to maintain a mean body condition score of greater than 3. Over winter, fall-calving cows lost more body weight and condition than spring calving cows, but there were no differences in body weight or condition score change between spring-calving cows in either system. Fall- and spring-calving cows in the yearround grazing system required 934 and 1,395 lb. hay dry matter/cow for maintenance during the winter whereas spring-calving cows in drylot required 4,776 lb. hay dry matter/cow. Rebreeding rates were not affected by management system. Average daily gains of spring-born calves did not differ between systems, but were greater than fall calves. Because of differences in land areas for the two systems, weight production of calves per acre of cows in the minimal land system was greater than those of the year-round grazing system, but when the additional weight gains of the stocker cattle were considered, production of total growing animals did not differ between the two systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a three year study, wintering systems utilizing the grazing of stockpiled perennial hay crop forages or corn crop residues were compared to maintaining cows in a drylot. In the summer of 1992, two cuttings of hay were harvested (June 22 and August 2) from three 10-acre fields containing “Johnstone” endophyte-free tall fescue and “Spreador II” alfalfa, and one cutting of hay was harvested from three 10- acre fields of smooth brome grass. “Arlington” red clover was frost-seeded into the smooth bromegrass fields in 1993 and into tall fescue-alfalfa and smooth bromegrass fields into 1994. Two cuttings of hay were harvested from all fields in subsequent years, and three-year average hay yields for tall fescue-alfalfa and smooth bromegrass-red clover were 4,336 and 3,481 pounds per acre, respectively. Regrowth of the forage following the August hay harvest of each year was accumulated for winter grazing. Following a killing frost in each year, two fields of each stockpiled forage were stocked with cows in midgestation at two acres per cow. Two 10-acre fields of corn crop residues were also stocked at two acres per cow, following the grain harvest. Mean dry matter forage yields at the initiation of grazing were 1,853, 2,173 and 5,797 pounds per acre for fields containing tall fescue-alfalfa, smooth bromegrass-red clover, and cornstalks, respectively. A drylot was stocked with 18 cows in 1992 and 1993 and 10 cows in 1994. All cows were fed hay as necessary to maintain a body condition score of five. During grazing, mean losses of organic matter were -6.4, -7.6, and -10.7 pounds per acre per cow from tall fescue-alfalfa, smooth bromegrass-red clover, and cornstalk fields. Average organic matter loss rates from stockpiled forages due to weathering alone were equal to only 30% of the weathering losses of the corn crop residues. In vitro digestibility of both stockpiled forages and cornstalks decreased at equal rates during grazing each year, with respective annual loss rates of .14, .08, and .06% per day. Cows grazing corn crop residues required an average of 1,321 pounds per cow less hay than cows maintained in the drylot to maintain equivalent body condition during the grazing season. Cows grazing tall fescue-alfalfa or smooth bromegrass-red clover had body weight gains and condition score changes equal to cows maintained in a drylot but required 64% and 62% less harvested hay than cows in the drylot during the grazing season. Over the entire stored forage cows grazing tall fescue-alfalfa and smooth bromegrass-red clover required an average of 2,390 and 2,337 pounds per cow less than those maintained in the drylot. Because less hay was needed to maintain cows grazing stockpiled forages, average annual excesses of 5,629 and 3,868 pounds of hay dry matter per cow remained in the stockpiled tall fescue-alfalfa and smooth bromegrass-red clover systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparison was made between two different summer grazing systems. One system was the summer component of a year-round grazing system, involving the rotational stocking of smooth bromegrass--orchardgrass--birdsfoot trefoil pastures and winter stockpiles pastures with cowcalf pairs co-grazing with stocker yearlings at .75 animal units per acre. That system was compared with a minimal land system involving the rotational stocking of smooth bromegrass--orchardgrass-- birdsfoot trefoil summer pastures with cow-calf pairs grazing at .64 animal units per acre and hay removal from 25% of the pasture. Stocker yearlings or hay removal were used as management tools to remove excess forage and optimize forage quality. Hay was removed once from three fourths of the winter stockpiled pastures and one fourth of the allocated summer pastures. Cow-calf pairs grazing in the year-round system utilized on fourth of the winter stockpile pastures due to lack of forage, whereas cow-calf pairs grazing with hay removal were supplemented with harvested hay for two weeks during the summer. Grazing system did not affect cow body weight, condition score, or daily calf weight gain. Growing animal production per acre was affected by grazing system, with the minimal land system having a higher production level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The winter component of a year-round grazing system involving grazing of corn crop residues followed by grazing stockpiled grass-legume forages was compared at the McNay Research Farm with that of the winter component of a minimal land system that maintained cows in drylot. In the summers of 1995 and 1996, two and one cuttings of hay per year were harvested from two 15-acre fields containing “Johnston” low endophtye tall fescue and red clover. Two cuttings of hay in 1995 and one cutting in 1996 were harvested from two 15-acre fields of smooth bromegrass and red clover. Hay yields were 4,236 and 4,600 pounds of dry matter per acre for the tall fescue-red clover in 1995 and 1996, and 2,239 and 2,300 pounds of dry matter per acre for the smooth bromegrass-red clover in 1995 and 1996. Following grain harvest, four 7.5-acre fields containing corn crop residues were stocked with cows at midgestation at an allowance of 1.5 acres per cow. Forage yields at the initiation of corn crop grazing in 1995 and 1996 were 3,757 and 3,551 pounds of dry matter per acre for corn crop residues. Stockpiled forage yields were 1,748 and 2,912 pounds of dry matter for tall fescue-red clover and 1,880 and 2,187 pounds for smooth bromegrass-red clover. Corn crop residues and stockpiled forages were grazed in a strip stocking system. For comparison, 20 cows in 1995 and 16 cows in 1996 were placed in two drylots simultaneously with initiation of corn crop grazing, where they remained throughout the winter and spring grazing periods. Cows maintained in drylots or grazing corn crop residue and stockpiled forages were supplemented with hay as large round bales to maintain a body condition score of five. In both years, no seasonal differences in body weight and body condition score were observed between grazing cows or cows maintained in drylots, but grazing cows required 85% and 98% less harvested hay in years 1 and 2 than cows in drylot during the winter and spring. Because less hay was needed to maintain grazing cows, excesses of 12,354 and 5,244 pounds of hay dry matter per cow in 1995 and 1996 remained in the year-round grazing system. During corn crop grazing, organic matter yield decreased at 23.5 and 28.8 pounds of organic matter per day from grazed areas of corn crop residues in 1995 and 1996. Organic matter losses due to weathering were 6.8, 10.3, and 12.7 pounds per day in corn crop residue, tall fescue-red clover and smooth bromegrass-red clover in 1995 and 12.1, 10.7, and 12.1 in 1996. Organic matter losses from grazed and ungrazed areas of tall fescue-red clover and smooth bromegrass-red clover during stockpiled grazing were 6.9, 6.9, and 2.1, 2.9 in 1995 and 13.4, 4.3, and +6.9, 4.4 pounds per day in 1996.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparison was made between two different summer grazing systems at the McNay Research Farm. One system was the summer component of a year-round grazing system, involving the rotational stocking of smooth bromegrass-orchardgrass-birdsfoot trefoil pastures and winter stockpile pastures with cow-calf pairs co-grazing with stocker yearlings at .75 animal units per acre. That system was compared with a minimal land system involving the rotational stocking of smooth bromegrass-orchardgrass-birdsfoot trefoil summer pastures with cow-calf pairs grazing at .64 animal units per acre and hay removal from 25% of the pasture. Stocker yearlings or hay removal were used as management tools to remove excess forage and optimize forage quality. Hay was removed once from three fourths of the winter stockpiled pastures in 1996 (Yr. 1) and all the pasture in 1997 (Yr. 2). One hay removal occurred on one fourth of the allocated summer pastures in Year 1 and one half of the pastures in Year 2. In Year one, cow-calf pairs grazing in the year-round system utilized one fourth of the winter stockpile pastures due to a lack of forage on the summer pastures, whereas in Year 2 cowcalf pairs grazed winter stockpile pastures to remove forage as a second cutting of hay. Cow-calf pairs grazing with hay removal were supplemented with harvested hay for two weeks during the summer of Year 1 due to lack of grazable forage; in Year 2, no supplementation was needed. Grazing system did not affect cow body weight, condition score, or daily calf gain in either year. Growing animal production per acre was affected by grazing system, with the minimal land system having a higher production level in Year 1 and Year 2. The year-round system also produced more net winter forage than did the minimal land system in Year 1. Differences in forage yield and quality were only observed between winter stockpile forages of tall fescue-red clover and smooth bromegrass-red clover and summer pastures during the months of June, July, and August.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The winter component of a year-round grazing system involving grazing of corn crop residues followed by grazing stockpiled grass legume forages was compared at the McNay Research Farm with that of the winter component of a minimal land system that maintained cows in drylot,. In the summer of 1995, two cuttings of hay were harvested from two 15-acre fields containing “Johnston” endophyte-free tall fescue and red clover, and two cuttings of hay were taken from two 15-acre fields of smooth bromegrass and red clover. Hay yields were 4,236 and 4,600 pounds of dry matter per acre for the tall fescue--red clover and smooth bromegrass--red clover. Following grain harvest four 7.5-acre fields containing corn crop residue were stocked with cows at midgestation at an allowance of 1.5 acres per cow. Forage yields at the initiation of corn crop grazing were 3,766pounds of dry matter per acre for corn crop residue, 1,748 pounds for tall fescue--red clover, and 1,.880 pounds for smooth bromegrass--red clover. Corn crop residues and stockpiled forages were grazed in a strip stocking system. For comparison, 20 cows were placed in two drylots simultaneously to the initiation of corn crop grazing where they remained throughout the winter and spring grazing seasons. Cows maintained in drylot or grazing corn crop residue and stockpiled forages were supplemented with hay as large round bales to maintain a body condition score of five. No seasonal differences in body weight and body condition were observed between grazing cows or cows maintained in drylot, but grazing cows required 87% and 84% less harvested hay than cows in drylot during the winter and spring respectively. Because less hay was needed to maintain grazing cows, an excess of 11,905 and 12,803 pounds of hay dry matter per cow remained in the year-round grazing system. During corn crop grazing, organic matter yield decreased at 27.3 pounds of organic matter per day from grazed areas of corn crop residue. Organic matter losses due to weathering were 9.4, 12.9, and 15.8 pounds per day in corn crop residue, tall fescue-red clover and smooth bromegrass-red clover. Organic matter losses from grazed and ungrazed areas during stockpiled grazing were 7.3 and 6.9 for tall fescue--red clover and 2.1, 2.9 for smooth bromegrass--red clover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The cerebral network that is active during rest and is deactivated during goal-oriented activity is called the default mode network (DMN). It appears to be involved in self-referential mental activity. Atypical functional connectivity in the DMN has been observed in schizophrenia. One hypothesis suggests that pathologically increased DMN connectivity in schizophrenia is linked with a main symptom of psychosis, namely, misattribution of thoughts. Methods: A resting-state pseudocontinuous arterial spin labeling (ASL) study was conducted to measure absolute cerebral blood flow (CBF) in 34 schizophrenia patients and 27 healthy controls. Using independent component analysis (ICA), the DMN was extracted from ASL data. Mean CBF and DMN connectivity were compared between groups using a 2-sample t test. Results: Schizophrenia patients showed decreased mean CBF in the frontal and temporal regions (P < .001). ICA demonstrated significantly increased DMN connectivity in the precuneus (x/y/z = -16/-64/38) in patients than in controls (P < .001). CBF was not elevated in the respective regions. DMN connectivity in the precuneus was significantly correlated with the Positive and Negative Syndrome Scale scores (P < .01). Conclusions: In schizophrenia patients, the posterior hub-which is considered the strongest part of the DMN-showed increased DMN connectivity. We hypothesize that this increase hinders the deactivation of the DMN and, thus, the translation of cognitive processes from an internal to an external focus. This might explain symptoms related to defective self-monitoring, such as auditory verbal hallucinations or ego disturbances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identifying drivers of species diversity is a major challenge in understanding and predicting the dynamics of species-rich semi-natural grasslands. In particular in temperate grasslands changes in land use and its consequences, i.e. increasing fragmentation, the on-going loss of habitat and the declining importance of regional processes such as seed dispersal by livestock, are considered key drivers of the diversity loss witnessed within the last decades. It is a largely unresolved question to what degree current temperate grassland communities already reflect a decline of regional processes such as longer distance seed dispersal. Answering this question is challenging since it requires both a mechanistic approach to community dynamics and a sufficient data basis that allows identifying general patterns. Here, we present results of a local individual- and trait-based community model that was initialized with plant functional types (PFTs) derived from an extensive empirical data set of species-rich grasslands within the `Biodiversity Exploratories' in Germany. Driving model processes included above- and belowground competition, dynamic resource allocation to shoots and roots, clonal growth, grazing, and local seed dispersal. To test for the impact of regional processes we also simulated seed input from a regional species pool. Model output, with and without regional seed input, was compared with empirical community response patterns along a grazing gradient. Simulated response patterns of changes in PFT richness, Shannon diversity, and biomass production matched observed grazing response patterns surprisingly well if only local processes were considered. Already low levels of additional regional seed input led to stronger deviations from empirical community pattern. While these findings cannot rule out that regional processes other than those considered in the modeling study potentially play a role in shaping the local grassland communities, our comparison indicates that European grasslands are largely isolated, i.e. local mechanisms explain observed community patterns to a large extent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The North Atlantic spring bloom is one of the main events that lead to carbon export to the deep ocean and drive oceanic uptake of CO(2) from the atmosphere. Here we use a suite of physical, bio-optical and chemical measurements made during the 2008 spring bloom to optimize and compare three different models of biological carbon export. The observations are from a Lagrangian float that operated south of Iceland from early April to late June, and were calibrated with ship-based measurements. The simplest model is representative of typical NPZD models used for the North Atlantic, while the most complex model explicitly includes diatoms and the formation of fast sinking diatom aggregates and cysts under silicate limitation. We carried out a variational optimization and error analysis for the biological parameters of all three models, and compared their ability to replicate the observations. The observations were sufficient to constrain most phytoplankton-related model parameters to accuracies of better than 15 %. However, the lack of zooplankton observations leads to large uncertainties in model parameters for grazing. The simulated vertical carbon flux at 100 m depth is similar between models and agrees well with available observations, but at 600 m the simulated flux is larger by a factor of 2.5 to 4.5 for the model with diatom aggregation. While none of the models can be formally rejected based on their misfit with the available observations, the model that includes export by diatom aggregation has a statistically significant better fit to the observations and more accurately represents the mechanisms and timing of carbon export based on observations not included in the optimization. Thus models that accurately simulate the upper 100 m do not necessarily accurately simulate export to deeper depths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There have been numerous attempts to reveal the neurobiological basis of schizophrenia spectrum disorders. Results however, remain as heterogeneous as the schizophrenia spectrum disorders itself. Therefore, one aim of this thesis was to divide patients affected by this disorder into subgroups in order to homogenize the results of future studies. In a first study it is suggested that psychopathological rating scales should focus on symptoms-clusters that may have a common neurophysiological background. The here presented Bern Psychopathology Scale (BPS) proposes that alterations in three wellknown brain systems (motor, language, and affective) are largely leading to the communication failures observable on a behavioral level, but also - as repeatedly hypothesized - to dysconnectivity within and between brain systems in schizophrenia spectrum disorders. The external validity of the motor domain in the BPS was tested against the objective measure of 24 hours wrist actigraphy, in a second study. The subjective, the quantitative, as well as the global rating of the degree of motor disorders in this patient group showed significant correlations to the acquired motor activity. This result confirmed in a first step the practicability of the motor domain of the BPS, but needs further validation regarding pathological brain alterations. Finally, in a third study (independent from the two other studies), two cerebral Resting State Networks frequently altered in schizophrenia were investigated for the first time using simultaneous EEG/fMRI: The well-known default mode network and the left working memory network. Besides the changes in these fMRI-based networks, there are well-documented findings that patients exhibit alterations in EEG spectra compared to healthy controls. However, only through the multimodal approach it was possible to discover that patients with schizophrenia spectrum disorders have a slower driving frequency of the Resting State Networks compared to the matched healthy controls. Such a dysfunctional coupling between neuronal frequency and functional brain organization could explain in a uni- or multifactorial way (dysfunctional cross-frequency coupling, maturational effects, vigilance fluctuations, task-related suppression), how the typical psychotic symptoms might occur. To conclude, the major contributions presented in this thesis were on one hand the development of a psychopathology rating scale that is based on the assumption of dysfunctional brain networks, as well as the new evidence of a dysfunctional triggering frequency of Resting State Networks from the simultaneous EEG/fMRI study in patients affected by a schizophrenia spectrum disorder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Meditation is a self-induced and willfully initiated practice that alters the state of consciousness. The meditation practice of Zazen, like many other meditation practices, aims at disregarding intrusive thoughts while controlling body posture. It is an open monitoring meditation characterized by detached moment-to-moment awareness and reduced conceptual thinking and self-reference. Which brain areas differ in electric activity during Zazen compared to task-free resting? Since scalp electroencephalography (EEG) waveforms are reference-dependent, conclusions about the localization of active brain areas are ambiguous. Computing intracerebral source models from the scalp EEG data solves this problem. In the present study, we applied source modeling using low resolution brain electromagnetic tomography (LORETA) to 58-channel scalp EEG data recorded from 15 experienced Zen meditators during Zazen and no-task resting. Zazen compared to no-task resting showed increased alpha-1 and alpha-2 frequency activity in an exclusively right-lateralized cluster extending from prefrontal areas including the insula to parts of the somatosensory and motor cortices and temporal areas. Zazen also showed decreased alpha and beta-2 activity in the left angular gyrus and decreased beta-1 and beta-2 activity in a large bilateral posterior cluster comprising the visual cortex, the posterior cingulate cortex and the parietal cortex. The results include parts of the default mode network and suggest enhanced automatic memory and emotion processing, reduced conceptual thinking and self-reference on a less judgmental, i.e., more detached moment-to-moment basis during Zazen compared to no-task resting.