988 resultados para respiratory mortality
Resumo:
Objective: A literature review to examine the incorporation of respiratory assessment into everyday surgical nursing practice; possible barriers to this; and the relationship to patient outcomes. Primary argument: Escalating demands on intensive care beds have led to highly dependent patients being cared for in general surgical ward areas. This change in patient demographics has meant the knowledge and skills required of registered nurses in these areas has expanded exponentially. The literature supported the notion that postoperative monitoring of vital signs should include the fundamental assessment of respiratory rate; depth and rhythm; work of breathing; use of accessory muscles and symmetrical chest movement; as well as auscultation of lung fields using a stethoscope. Early intervention in response to changes in a patient's respiratory health status impacts positively on patient health outcomes. Substantial support exists for the contention that technologically adept nurses who also possess competent respiratory assessment skills make a difference to respiratory care. Conclusions: Sub-clinical respiratory problems have been demonstrated to contribute to adverse events. There is a paucity of research knowledge as to whether respiratory education programs and associated inservice make a difference to nursing clinical practice. Similarly, the implications for associated respiratory educational needs are not well documented, nor has a research base been sufficiently developed to guide nursing practice. Further research has the potential to influence the future role and function of the registered nurse by determining the importance of respiratory education programs on post-operative patient outcomes.
Resumo:
Background & aims The Australasian Nutrition Care Day Survey (ANCDS) ascertained if malnutrition and poor food intake are independent risk factors for health-related outcomes in Australian and New Zealand hospital patients. Methods Phase 1 recorded nutritional status (Subjective Global Assessment) and 24-h food intake (0, 25, 50, 75, 100% intake). Outcomes data (Phase 2) were collected 90-days post-Phase 1 and included length of hospital stay (LOS), readmissions and in-hospital mortality. Results Of 3122 participants (47% females, 65 ± 18 years) from 56 hospitals, 32% were malnourished and 23% consumed ≤ 25% of the offered food. Malnourished patients had greater median LOS (15 days vs. 10 days, p < 0.0001) and readmissions rates (36% vs. 30%, p = 0.001). Median LOS for patients consuming ≤ 25% of the food was higher than those consuming ≤ 50% (13 vs. 11 days, p < 0.0001). The odds of 90-day in-hospital mortality were twice greater for malnourished patients (CI: 1.09–3.34, p = 0.023) and those consuming ≤ 25% of the offered food (CI: 1.13–3.51, p = 0.017), respectively. Conclusion The ANCDS establishes that malnutrition and poor food intake are independently associated with in-hospital mortality in the Australian and New Zealand acute care setting.
Resumo:
Rationale: The Australasian Nutrition Care Day Survey (ANCDS) evaluated if malnutrition and decreased food intake are independent risk factors for negative outcomes in hospitalised patients. Methods: A multicentre (56 hospitals) cross-sectional survey was conducted in two phases. Phase 1 evaluated nutritional status (defined by Subjective Global Assessment) and 24-hour food intake recorded as 0, 25, 50, 75, and 100% intake. Phase 2 data, which included length of stay (LOS), readmissions and mortality, were collected 90 days post-Phase 1. Logistic regression was used to control for confounders: age, gender, disease type and severity (using Patient Clinical Complexity Level scores). Results: Of 3122 participants (53% males, mean age: 65±18 years) 32% were malnourished and 23% consumed�25% of the offered food. Median LOS for malnourished (MN) patients was higher than well-nourished (WN) patients (15 vs. 10 days, p<0.0001). Median LOS for patients consuming �25% of the food was higher than those consuming �50% (13 vs. 11 days, p<0.0001). MN patients had higher readmission rates (36% vs. 30%, p = 0.001). The odds ratios of 90-day in-hospital mortality were 1.8 times greater for MN patients (CI: 1.03 3.22, p = 0.04) and 2.7 times greater for those consuming �25% of the offered food (CI: 1.54 4.68, p = 0.001). Conclusion: The ANCDS demonstrates that malnutrition and/or decreased food intake are associated with longer LOS and readmissions. The survey also establishes that malnutrition and decreased food intake are independent risk factors for in-hospital mortality in acute care patients; and highlights the need for appropriate nutritional screening and support during hospitalisation. Disclosure of Interest: None Declared.
Resumo:
Background The mechanisms underlying socioeconomic inequalities in mortality from cardiovascular diseases (CVD) are largely unknown. We studied the contribution of childhood socioeconomic conditions and adulthood risk factors to inequalities in CVD mortality in adulthood. Methods The prospective GLOBE study was carried out in the Netherlands, with baseline data from 1991, and linked with the cause of death register in 2007. At baseline, participants reported on adulthood socioeconomic position (SEP) (own educational level), childhood socioeconomic conditions (occupational level of respondent’s father), and a broad range of adulthood risk factors (health behaviours, material circumstances, psychosocial factors). This present study is based on 5,395 men and 6,306 women, and the data were analysed using Cox regression models and hazard ratios (HR). Results A low adulthood SEP was associated with increased CVD mortality for men (HR 1.84; 95% CI: 1.41-2.39) and women (HR 1.80; 95%CI: 1.04-3.10). Those with poorer childhood socioeconomic conditions were more likely to die from CVD in adulthood, but this reached statistical significance only among men with the poorest childhood socioeconomic circumstances. About half of the investigated adulthood risk factors showed significant associations with CVD mortality among both men and women, namely renting a house, experiencing financial problems, smoking, physical activity and marital status. Alcohol consumption and BMI showed a U-shaped relationship with CVD mortality among women, with the risk being significantly greater for both abstainers and heavy drinkers, and among women who were underweight or obese. Among men, being single or divorced and using sleep/anxiety drugs increased the risk of CVD mortality. In explanatory models, the largest contributor to adulthood CVD inequalities were material conditions for men (42%; 95% CI: −73 to −20) and behavioural factors for women (55%; 95% CI: -191 to −28). Simultaneous adjustment for adulthood risk factors and childhood socioeconomic conditions attenuated the HR for the lowest adulthood SEP to 1.34 (95% CI: 0.99-1.82) for men and 1.19 (95% CI: 0.65-2.15) for women. Conclusions Adulthood material, behavioural and psychosocial factors played a major role in the explanation of adulthood SEP inequalities in CVD mortality. Childhood socioeconomic circumstances made a modest contribution, mainly via their association with adulthood risk factors. Policies and interventions to reduce health inequalities are likely to be most effective when considering the influence of socioeconomic circumstances across the entire life course and in particular, poor material conditions and unhealthy behaviours in adulthood.
Resumo:
BACKGROUND: Studies have shown that nurse staffing levels, among many other factors in the hospital setting, contribute to adverse patient outcomes. Concerns about patient safety and quality of care have resulted in numerous studies being conducted to examine the relationship between nurse staffing levels and the incidence of adverse patient events in both general wards and intensive care units. AIM: The aim of this paper is to review literature published in the previous 10 years which examines the relationship between nurse staffing levels and the incidence of mortality and morbidity in adult intensive care unit patients. METHODS: A literature search from 2002 to 2011 using the MEDLINE, Cumulative Index to Nursing and Allied Health Literature (CINAHL), PsycINFO, and Australian digital thesis databases was undertaken. The keywords used were: intensive care; critical care; staffing; nurse staffing; understaffing; nurse-patient ratios; adverse outcomes; mortality; ventilator-associated pneumonia; ventilator-acquired pneumonia; infection; length of stay; pressure ulcer/injury; unplanned extubation; medication error; readmission; myocardial infarction; and renal failure. A total of 19 articles were included in the review. Outcomes of interest are patient mortality and morbidity, particularly infection and pressure ulcers. RESULTS: Most of the studies were observational in nature with variables obtained retrospectively from large hospital databases. Nurse staffing measures and patient outcomes varied widely across the studies. While an overall statistical association between increased nurse staffing levels and decreased adverse patient outcomes was not found in this review, most studies concluded that a trend exists between increased nurse staffing levels and decreased adverse events. CONCLUSION: While an overall statistical association between increased nurse staffing levels and decreased adverse patient outcomes was not found in this review, most studies demonstrated a trend between increased nurse staffing levels and decreased adverse patient outcomes in the intensive care unit which is consistent with previous literature. While further more robust research methodologies need to be tested in order to more confidently demonstrate this association and decrease the influence of the many other confounders to patient outcomes; this would be difficult to achieve in this field of research.
Resumo:
Background: Bicycle commuting in an urban environment of high air pollution is known as a potential health risk, especially for susceptible individuals. While risk management strategies aimed to reduce motorised traffic emissions exposure have been suggested, limited studies have assessed the utility of such strategies in real-world circumstances. Objectives: The potential of reducing exposure to ultrafine particles (UFP; < 0.1 µm) during bicycle commuting by lowering interaction with motorised traffic was investigated with real-time air pollution and acute inflammatory measurements in healthy individuals using their typical, and an alternative to their typical, bicycle commute route. Methods: Thirty-five healthy adults (mean ± SD: age = 39 ± 11 yr; 29% female) each completed two return trips of their typical route (HIGH) and a pre-determined altered route of lower interaction with motorised traffic (LOW; determined by the proportion of on-road cycle paths). Particle number concentration (PNC) and diameter (PD) were monitored in real-time in-commute. Acute inflammatory indices of respiratory symptom incidence, lung function and spontaneous sputum (for inflammatory cell analyses) were collected immediately pre-commute, and one and three hours post-commute. Results: LOW resulted in a significant reduction in mean PNC (1.91 x e4 ± 0.93 x e4 ppcc vs. 2.95 x e4 ± 1.50 x e4 ppcc; p ≤ 0.001). Besides incidence of in-commute offensive odour detection (42 vs. 56 %; p = 0.019), incidence of dust and soot observation (33 vs. 47 %; p = 0.038) and nasopharyngeal irritation (31 vs. 41 %; p = 0.007), acute inflammatory indices were not significantly associated to in-commute PNC, nor were these indices reduced with LOW compared to HIGH. Conclusions: Exposure to PNC, and the incidence of offensive odour and nasopharyngeal irritation, can be significantly reduced when utilising a strategy of lowering interaction with motorised traffic whilst bicycle commuting, which may bring important benefits for both healthy and susceptible individuals.
Resumo:
Intense exercise stimulates the systemic release of a variety of factors that alter neutrophil surface receptor expression and functional activity. These alterations may influence resistance to infection after intense exercise. The aim of this study was to examine the influence of exercise intensity on neutrophil receptor expression, degranulation (measured by plasma and intracellular myeloperoxidase concentrations), and respiratory burst activity. Ten well-trained male runners ran on a treadmill for 60 min at 60% [moderate-intensity exercise (MI)] and 85% maximal oxygen consumption [high-intensity exercise (HI)]. Blood was drawn immediately before and after exercise and at 1 h postexercise. Immediately after HI, the expression of the neutrophil receptor CD16 was significantly below preexercise values (P < 0.01), whereas MI significantly reduced CD35 expression below preexercise values (P < 0.05). One hour after exercise at both intensities, there was a significant decline in CD11b expression (P < 0.05) and a further decrease in CD16 expression compared with preexercise values (P < 0.01). CD16 expression was lower 1 h after HI than 1 h after MI (P < 0.01). Immediately after HI, intracellular myeloperoxidase concentration was less than preexercise values (P < 0.01), whereas plasma myeloperoxidase concentration was greater (P < 0.01), indicating that HI stimulated neutrophil degranulation. Plasma myeloperoxidase concentration was higher immediately after HI than after MI (P < 0.01). Neutrophil respiratory burst activity increased after HI (P < 0.01). In summary, both MI and HI reduced neutrophil surface receptor expression. Although CD16 expression was reduced to a greater extent after HI, this reduction did not impair neutrophil degranulation and respiratory burst activity.
Resumo:
Neutrophils constitute 50-60% of all circulating leukocytes; they present the first line of microbicidal defense and are involved in inflammatory responses. To examine immunocompetence in athletes, numerous studies have investigated the effects of exercise on the number of circulating neutrophils and their response to stimulation by chemotactic stimuli and activating factors. Exercise causes a biphasic increase in the number of neutrophils in the blood, arising from increases in catecholamine and cortisol concentrations. Moderate intensity exercise may enhance neutrophil respiratory burst activity, possibly through increases in the concentrations of growth hormone and the inflammatory cytokine IL-6. In contrast, intense or long duration exercise may suppress neutrophil degranulation and the production of reactive oxidants via elevated circulating concentrations of epinephrine (adrenaline) and cortisol. There is evidence of neutrophil degranulation and activation of the respiratory burst following exercise-induced muscle damage. In principle, improved responsiveness of neutrophils to stimulation following exercise of moderate intensity could mean that individuals participating in moderate exercise may have improved resistance to infection. Conversely, competitive athletes undertaking regular intense exercise may be at greater risk of contracting illness. However, there are limited data to support this concept. To elucidate the cellular mechanisms involved in the neutrophil responses to exercise, researchers have examined changes in the expression of cell membrane receptors, the production and release of reactive oxidants and more recently, calcium signaling. The investigation of possible modifications of other signal transduction events following exercise has not been possible because of current methodological limitations. At present, variation in exercise-induced alterations in neutrophil function appears to be due to differences in exercise protocols, training status, sampling points and laboratory assay techniques.
Resumo:
Dear Editor We thank Dr Klek for his interest in our article and giving us the opportunity to clarify our study and share our thoughts. Our study looks at the prevalence of malnutrition in an acute tertiary hospital and tracked the outcomes prospectively.1 There are a number of reasons why we chose Subjective Global Assessment (SGA) to determine the nutritional status of patients. Firstly, we took the view that nutrition assessment tools should be used to determine nutrition status and diagnose presence and severity of malnutrition; whereas the purpose of nutrition screening tools are to identify individuals who are at risk of malnutrition. Nutritional assessment rather than screening should be used as the basis for planning and evaluating nutrition interventions for those diagnosed with malnutrition. Secondly, Subjective Global Assessment (SGA) has been well accepted and validated as an assessment tool to diagnose the presence and severity of malnutrition in clinical practice.2, 3 It has been used in many studies as a valid prognostic indicator of a range of nutritional and clinical outcomes.4, 5, 6 On the other hand, Malnutrition Universal Screening Tool (MUST)7 and Nutrition Risk Screening 2002 (NRS 2002)8 have been established as screening rather than assessment tools.
Resumo:
The health impacts of exposure to ambient temperature have been drawing increasing attention from the environmental health research community, government, society, industries, and the public. Case-crossover and time series models are most commonly used to examine the effects of ambient temperature on mortality. However, some key methodological issues remain to be addressed. For example, few studies have used spatiotemporal models to assess the effects of spatial temperatures on mortality. Few studies have used a case-crossover design to examine the delayed (distributed lag) and non-linear relationship between temperature and mortality. Also, little evidence is available on the effects of temperature changes on mortality, and on differences in heat-related mortality over time. This thesis aimed to address the following research questions: 1. How to combine case-crossover design and distributed lag non-linear models? 2. Is there any significant difference in effect estimates between time series and spatiotemporal models? 3. How to assess the effects of temperature changes between neighbouring days on mortality? 4. Is there any change in temperature effects on mortality over time? To combine the case-crossover design and distributed lag non-linear model, datasets including deaths, and weather conditions (minimum temperature, mean temperature, maximum temperature, and relative humidity), and air pollution were acquired from Tianjin China, for the years 2005 to 2007. I demonstrated how to combine the case-crossover design with a distributed lag non-linear model. This allows the case-crossover design to estimate the non-linear and delayed effects of temperature whilst controlling for seasonality. There was consistent U-shaped relationship between temperature and mortality. Cold effects were delayed by 3 days, and persisted for 10 days. Hot effects were acute and lasted for three days, and were followed by mortality displacement for non-accidental, cardiopulmonary, and cardiovascular deaths. Mean temperature was a better predictor of mortality (based on model fit) than maximum or minimum temperature. It is still unclear whether spatiotemporal models using spatial temperature exposure produce better estimates of mortality risk compared with time series models that use a single site’s temperature or averaged temperature from a network of sites. Daily mortality data were obtained from 163 locations across Brisbane city, Australia from 2000 to 2004. Ordinary kriging was used to interpolate spatial temperatures across the city based on 19 monitoring sites. A spatiotemporal model was used to examine the impact of spatial temperature on mortality. A time series model was used to assess the effects of single site’s temperature, and averaged temperature from 3 monitoring sites on mortality. Squared Pearson scaled residuals were used to check the model fit. The results of this study show that even though spatiotemporal models gave a better model fit than time series models, spatiotemporal and time series models gave similar effect estimates. Time series analyses using temperature recorded from a single monitoring site or average temperature of multiple sites were equally good at estimating the association between temperature and mortality as compared with a spatiotemporal model. A time series Poisson regression model was used to estimate the association between temperature change and mortality in summer in Brisbane, Australia during 1996–2004 and Los Angeles, United States during 1987–2000. Temperature change was calculated by the current day's mean temperature minus the previous day's mean. In Brisbane, a drop of more than 3 �C in temperature between days was associated with relative risks (RRs) of 1.16 (95% confidence interval (CI): 1.02, 1.31) for non-external mortality (NEM), 1.19 (95% CI: 1.00, 1.41) for NEM in females, and 1.44 (95% CI: 1.10, 1.89) for NEM aged 65.74 years. An increase of more than 3 �C was associated with RRs of 1.35 (95% CI: 1.03, 1.77) for cardiovascular mortality and 1.67 (95% CI: 1.15, 2.43) for people aged < 65 years. In Los Angeles, only a drop of more than 3 �C was significantly associated with RRs of 1.13 (95% CI: 1.05, 1.22) for total NEM, 1.25 (95% CI: 1.13, 1.39) for cardiovascular mortality, and 1.25 (95% CI: 1.14, 1.39) for people aged . 75 years. In both cities, there were joint effects of temperature change and mean temperature on NEM. A change in temperature of more than 3 �C, whether positive or negative, has an adverse impact on mortality even after controlling for mean temperature. I examined the variation in the effects of high temperatures on elderly mortality (age . 75 years) by year, city and region for 83 large US cities between 1987 and 2000. High temperature days were defined as two or more consecutive days with temperatures above the 90th percentile for each city during each warm season (May 1 to September 30). The mortality risk for high temperatures was decomposed into: a "main effect" due to high temperatures using a distributed lag non-linear function, and an "added effect" due to consecutive high temperature days. I pooled yearly effects across regions and overall effects at both regional and national levels. The effects of high temperature (both main and added effects) on elderly mortality varied greatly by year, city and region. The years with higher heat-related mortality were often followed by those with relatively lower mortality. Understanding this variability in the effects of high temperatures is important for the development of heat-warning systems. In conclusion, this thesis makes contribution in several aspects. Case-crossover design was combined with distribute lag non-linear model to assess the effects of temperature on mortality in Tianjin. This makes the case-crossover design flexibly estimate the non-linear and delayed effects of temperature. Both extreme cold and high temperatures increased the risk of mortality in Tianjin. Time series model using single site’s temperature or averaged temperature from some sites can be used to examine the effects of temperature on mortality. Temperature change (no matter significant temperature drop or great temperature increase) increases the risk of mortality. The high temperature effect on mortality is highly variable from year to year.
Resumo:
Objective: To examine the effects of extremely cold and hot temperatures on ischaemic heart disease (IHD) mortality in five cities (Beijing, Tianjin, Shanghai, Wuhan and Guangzhou) in China; and to examine the time relationships between cold and hot temperatures and IHD mortality for each city. Design: A negative binomial regression model combined with a distributed lag non-linear model was used to examine city-specific temperature effects on IHD mortality up to 20 lag days. A meta-analysis was used to pool the cold effects and hot effects across the five cities. Patients: 16 559 IHD deaths were monitored by a sentinel surveillance system in five cities during 2004–2008. Results: The relationships between temperature and IHD mortality were non-linear in all five cities. The minimum-mortality temperatures in northern cities were lower than in southern cities. In Beijing, Tianjin and Guangzhou, the effects of extremely cold temperatures were delayed, while Shanghai and Wuhan had immediate cold effects. The effects of extremely hot temperatures appeared immediately in all the cities except Wuhan. Meta-analysis showed that IHD mortality increased 48% at the 1st percentile of temperature (extremely cold temperature) compared with the 10th percentile, while IHD mortality increased 18% at the 99th percentile of temperature (extremely hot temperature) compared with the 90th percentile. Conclusions: Results indicate that both extremely cold and hot temperatures increase IHD mortality in China. Each city has its characteristics of heat effects on IHD mortality. The policy for response to climate change should consider local climate–IHD mortality relationships.
Resumo:
Background Surveillance programs and research for acute respiratory infections in remote Australian communities are complicated by difficulties in the storage and transport of frozen samples to urban laboratories for testing. This study assessed the sensitivity of a simple method for transporting nasal swabs from a remote setting for bacterial polymerase chain reaction (PCR) testing. Methods We sampled every individual who presented to a remote community clinic over a three week period in August at a time of low influenza and no respiratory syncytial virus activity. Two anterior nasal swabs were collected from each participant. The left nare specimen was mailed to the laboratory via routine postal services. The right nare specimen was transported frozen. Testing for six bacterial species was undertaken using real-time PCR. Results One hundred and forty participants were enrolled who contributed 150 study visits and paired specimens for testing. Respiratory illnesses accounted for 10% of the reasons for presentation. Bacteria were identified in 117 (78%) presentations for 110 (79.4%) individuals; Streptococcus pneumoniae and Haemophilus influenzae were the most common (each identified in 58% of episodes). The overall sensitivity for any bacterium detected in mailed specimens was 82.2% (95% CI 73.6, 88.1) compared to 94.8% (95% CI 89.4, 98.1) for frozen specimens. The sensitivity of the two methods varied by species identified. Conclusion The mailing of unfrozen nasal specimens from remote communities appears to influence the utility of the specimen for bacterial studies, with a loss in sensitivity for the detection of any species overall. Further studies are needed to confirm our finding and to investigate the possible mechanisms of effect. Clinical trial registration Australia and New Zealand Clinical Trials Registry Number: ACTRN12609001006235. Keywords: Respiratory bacteria; RT-PCR; Specimen transport; Laboratory methods
Resumo:
Bicycle commuting has the potential to be an effective contributing solution to address some of modern society’s biggest issues, including cardiovascular disease, anthropogenic climate change and urban traffic congestion. However, individuals shifting from a passive to an active commute mode may be increasing their potential for air pollution exposure and the associated health risk. This project, consisting of three studies, was designed to investigate the health effects of bicycle commuters in relation to air pollution exposure, in a major city in Australia (Brisbane). The aims of the three studies were to: 1) examine the relationship of in-commute air pollution exposure perception, symptoms and risk management; 2) assess the efficacy of commute re-routing as a risk management strategy by determining the exposure potential profile of ultrafine particles along commute route alternatives of low and high proximity to motorised traffic; and, 3) evaluate the feasibility of implementing commute re-routing as a risk management strategy by monitoring ultrafine particle exposure and consequential physiological response from using commute route alternatives based on real-world circumstances; 3) investigate the potential of reducing exposure to ultrafine particles (UFP; < 0.1 µm) during bicycle commuting by lowering proximity to motorised traffic with real-time air pollution and acute inflammatory measurements in healthy individuals using their typical, and an alternative to their typical, bicycle commute route. The methods of the three studies included: 1) a questionnaire-based investigation with regular bicycle commuters in Brisbane, Australia. Participants (n = 153; age = 41 ± 11 yr; 28% female) reported the characteristics of their typical bicycle commute, along with exposure perception and acute respiratory symptoms, and amenability for using a respirator or re-routing their commute as risk management strategies; 2) inhaled particle counts measured along popular pre-identified bicycle commute route alterations of low (LOW) and high (HIGH) motorised traffic to the same inner-city destination at peak commute traffic times. During commute, real-time particle number concentration (PNC; mostly in the UFP range) and particle diameter (PD), heart and respiratory rate, geographical location, and meteorological variables were measured. To determine inhaled particle counts, ventilation rate was calculated from heart-rate-ventilation associations, produced from periodic exercise testing; 3) thirty-five healthy adults (mean ± SD: age = 39 ± 11 yr; 29% female) completed two return trips of their typical route (HIGH) and a pre-determined altered route of lower proximity to motorised traffic (LOW; determined by the proportion of on-road cycle paths). Particle number concentration (PNC) and diameter (PD) were monitored in real-time in-commute. Acute inflammatory indices of respiratory symptom incidence, lung function and spontaneous sputum (for inflammatory cell analyses) were collected immediately pre-commute, and one and three hours post-commute. The main results of the three studies are that: 1) healthy individuals reported a higher incidence of specific acute respiratory symptoms in- and post- (compared to pre-) commute (p < 0.05). The incidence of specific acute respiratory symptoms was significantly higher for participants with respiratory disorder history compared to healthy participants (p < 0.05). The incidence of in-commute offensive odour detection, and the perception of in-commute air pollution exposure, was significantly lower for participants with smoking history compared to healthy participants (p < 0.05). Females reported significantly higher incidence of in-commute air pollution exposure perception and other specific acute respiratory symptoms, and were more amenable to commute re-routing, compared to males (p < 0.05). Healthy individuals have indicated a higher incidence of acute respiratory symptoms in- and post- (compared to pre-) bicycle commuting, with female gender and respiratory disorder history indicating a comparably-higher susceptibility; 2) total mean PNC of LOW (compared to HIGH) was reduced (1.56 x e4 ± 0.38 x e4 versus 3.06 x e4 ± 0.53 x e4 ppcc; p = 0.012). Total estimated ventilation rate did not vary significantly between LOW and HIGH (43 ± 5 versus 46 ± 9 L•min; p = 0.136); however, due to total mean PNC, accumulated inhaled particle counts were 48% lower in LOW, compared to HIGH (7.6 x e8 ± 1.5 x e8 versus 14.6 x e8 ± 1.8 x e8; p = 0.003); 3) LOW resulted in a significant reduction in mean PNC (1.91 x e4 ± 0.93 x e4 ppcc vs. 2.95 x e4 ± 1.50 x e4 ppcc; p ≤ 0.001). Commute distance and duration were not significantly different between LOW and HIGH (12.8 ± 7.1 vs. 12.0 ± 6.9 km and 44 ± 17 vs. 42 ± 17 mins, respectively). Besides incidence of in-commute offensive odour detection (42 vs. 56 %; p = 0.019), incidence of dust and soot observation (33 vs. 47 %; p = 0.038) and nasopharyngeal irritation (31 vs. 41 %; p = 0.007), acute inflammatory indices were not significantly associated to in-commute PNC, nor were these indices reduced with LOW compared to HIGH. The main conclusions of the three studies are that: 1) the perception of air pollution exposure levels and the amenability to adopt exposure risk management strategies where applicable will aid the general population in shifting from passive, motorised transport modes to bicycle commuting; 2) for bicycle commuting at peak morning commute times, inhaled particle counts and therefore cardiopulmonary health risk may be substantially reduced by decreasing exposure to motorised traffic, which should be considered by both bicycle commuters and urban planners; 3) exposure to PNC, and the incidence of offensive odour and nasopharyngeal irritation, can be significantly reduced when utilising a strategy of lowering proximity to motorised traffic whilst bicycle commuting, without significantly increasing commute distance or duration, which may bring important benefits for both healthy and susceptible individuals. In summary, the findings from this project suggests that bicycle commuters can significantly lower their exposure to ultrafine particle emissions by varying their commute route to reduce proximity to motorised traffic and associated combustion emissions without necessarily affecting their time of commute. While the health endpoints assessed with healthy individuals were not indicative of acute health detriment, individuals with pre-disposing physiological-susceptibility may benefit considerably from this risk management strategy – a necessary research focus with the contemporary increased popularity of both promotion and participation in bicycle commuting.
Resumo:
Air pollution is a widespread health problem associated with respiratory symptoms. Continuous exposure monitoring was performed to estimate alveolar and tracheobronchial dose, measured as deposited surface area, for 103 children and to evaluate the long-term effects of exposure to airborne particles through spirometry, skin prick tests and measurement of exhaled nitric oxide (eNO). The mean daily alveolar deposited surface area dose received by children was 1.35×103 mm2. The lowest and highest particle number concentrations were found during sleeping and eating time. A significant negative association was found between changes in pulmonary function tests and individual dose estimates. Significant differences were found for asthmatics, children with allergic rhinitis and sensitive to allergens compared to healthy subjects for eNO. Variation is a child’s activity over time appeared to have a strong impact on respiratory outcomes, which indicates that personal monitoring is vital for assessing the expected health effects of exposure to particles.
Resumo:
Mortality and cost outcomes of elderly intensive care unit (ICU) trauma patients were characterised in a retrospective cohort study from an Australian tertiary ICU. Trauma patients admitted between January 2000 and December 2005 were grouped into three major age categories: aged ≥65 years admitted into ICU (n=272); aged ≥65 years admitted into general ward (n=610) and aged <65 years admitted into ICU (n=1617). Hospital mortality predictors were characterised as odds ratios (OR) using logistic regression. The impact of predictor variables on (log) total hospital-stay costs was determined using least squares regression. An alternate treatment-effects regression model estimated the mortality cost-effect as an endogenous variable. Mortality predictors (P ≤0.0001, comparator: ICU ≥65 years, ventilated) were: ICU <65 not-ventilated (OR 0.014); ICU <65 ventilated (OR 0.090); ICU age ≥65 not-ventilated (OR 0.061) and ward ≥65 (OR 0.086); increasing injury severity score and increased Charlson comorbidity index of 1 and 2, compared with zero (OR 2.21 [1.40 to 3.48] and OR 2.57 [1.45 to 4.55]). The raw mean daily ICU and hospital costs in A$ 2005 (US$) for age <65 and ≥65 to ICU, and ≥65 to the ward were; for year 2000: ICU, $2717 (1462) and $2777 (1494); hospital, $1837 (988) and $1590 (855); ward $933 (502); for year 2005: ICU, $3202 (2393) and $3086 (2307); hospital, $1938 (1449) and $1914 (1431); ward $1180 (882). Cost increments were predicted by age ≥65 and ICU admission, increasing injury severity score, mechanical ventilation, Charlson comorbidity index increments and hospital survival. Mortalitycost-effect was estimated at -63% by least squares regression and -82% by treatment-effects regression model. Patient demographic factors, injury severity and its consequences predict both cost and survival in trauma. The cost mortality effect was biased upwards by conventional least squares regression estimation.